論文の概要: Autonomous Deep Agent
- arxiv url: http://arxiv.org/abs/2502.07056v1
- Date: Mon, 10 Feb 2025 21:46:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-12 14:09:23.417367
- Title: Autonomous Deep Agent
- Title(参考訳): 自律型ディープエージェント
- Authors: Amy Yu, Erik Lebedev, Lincoln Everett, Xiaoxin Chen, Terry Chen,
- Abstract要約: Deep Agentは、複雑なマルチフェーズタスクを管理するために設計された高度な自律AIシステムである。
システムの基盤は階層型タスクDAGフレームワーク上に構築されています。
Deep Agentは、自己管理型AIシステムにおいて、新しいパラダイムを確立する。
- 参考スコア(独自算出の注目度): 0.7489814067742621
- License:
- Abstract: This technical brief introduces Deep Agent, an advanced autonomous AI system designed to manage complex multi-phase tasks through a novel hierarchical task management architecture. The system's foundation is built on our Hierarchical Task DAG (HTDAG) framework, which dynamically decomposes high-level objectives into manageable sub-tasks while rigorously maintaining dependencies and execution coherence. Deep Agent advances beyond traditional agent systems through three key innovations: First, it implements a recursive two-stage planner-executor architecture that enables continuous task refinement and adaptation as circumstances change. Second, it features an Autonomous API & Tool Creation (AATC) system that automatically generates reusable components from UI interactions, substantially reducing operational costs for similar tasks. Third, it incorporates Prompt Tweaking Engine and Autonomous Prompt Feedback Learning components that optimize Large Language Model prompts for specific scenarios, enhancing both inference accuracy and operational stability. These components are integrated to form a service infrastructure that manages user contexts, handles complex task dependencies, and orchestrates end-to-end agentic workflow execution. Through this sophisticated architecture, Deep Agent establishes a novel paradigm in self-governing AI systems, demonstrating robust capability to independently handle intricate, multi-step tasks while maintaining consistent efficiency and reliability through continuous self-optimization.
- Abstract(参考訳): このテクニカルブリーフィングでは、新しい階層的なタスク管理アーキテクチャを通じて複雑なマルチフェーズタスクを管理するように設計された、高度な自律AIシステムであるDeep Agentを紹介している。
システムの基盤は階層型タスクDAG(HTDAG)フレームワーク上に構築されており、依存関係と実行の一貫性を厳格に維持しつつ、ハイレベルな目的を管理可能なサブタスクに動的に分解する。
Deep Agentは3つの重要なイノベーションを通じて、従来のエージェントシステムを超えた進化を遂げている。
第2に、UIインタラクションから再利用可能なコンポーネントを自動的に生成し、同様のタスクの運用コストを大幅に削減するAutonomous API & Tool Creation(AATC)システムを備えている。
第三に、Prompt Tweaking EngineとAutonomous Prompt Feedback Learningコンポーネントが組み込まれており、大きな言語モデルのプロンプトを特定のシナリオに最適化し、推論精度と運用安定性を向上する。
これらのコンポーネントは、ユーザコンテキストを管理し、複雑なタスク依存を処理し、エンドツーエンドのエージェントワークフロー実行をオーケストレーションするサービスインフラストラクチャを形成するために統合されます。
この高度なアーキテクチャを通じて、Deep Agentは、自律的なAIシステムにおける新しいパラダイムを確立し、継続的自己最適化を通じて一貫した効率性と信頼性を維持しながら、複雑なマルチステップタスクを独立して処理する堅牢な能力を実証する。
関連論文リスト
- Advancing Agentic Systems: Dynamic Task Decomposition, Tool Integration and Evaluation using Novel Metrics and Dataset [1.904851064759821]
Advanced Agentic Framework: マルチホップクエリの処理、タスクグラフの生成と実行、適切なツールの選択、リアルタイムの変更への適応を行うシステム。
新しい評価基準: エージェントシステムを総合的に評価するためのNode F1スコア、構造類似度指標(SSI)、ツールF1スコアの導入。
AsyncHowベースのデータセットは、さまざまなタスク複雑度にわたるエージェントの振る舞いを分析する。
論文 参考訳(メタデータ) (2024-10-29T18:45:13Z) - Asynchronous Tool Usage for Real-Time Agents [61.3041983544042]
並列処理とリアルタイムツール利用が可能な非同期AIエージェントを導入する。
私たちの重要な貢献は、エージェントの実行とプロンプトのためのイベント駆動有限状態マシンアーキテクチャです。
この研究は、流体とマルチタスクの相互作用が可能なAIエージェントを作成するための概念的なフレームワークと実践的なツールの両方を提示している。
論文 参考訳(メタデータ) (2024-10-28T23:57:19Z) - Synergising Human-like Responses and Machine Intelligence for Planning in Disaster Response [10.294618771570985]
デュアルプロセス理論(DPT)にインスパイアされた注意に基づく認知アーキテクチャを提案する。
このフレームワークは、高速だが(人間のような)応答と、遅いが最適化されたマシンインテリジェンスの計画能力を統合する。
論文 参考訳(メタデータ) (2024-04-15T15:47:08Z) - Hierarchical Auto-Organizing System for Open-Ended Multi-Agent Navigation [12.753472502707153]
Minecraftにおけるマルチエージェント組織のための階層的自動組織ナビゲーションシステムを設計する。
Minecraft環境では、探索や探索を含む一連のナビゲーションタスクも設計しています。
私たちは、具体的AIの境界を押し進め、より人間的な組織構造へと移行する、具体的組織の開発を目指しています。
論文 参考訳(メタデータ) (2024-03-13T06:22:17Z) - S-Agents: Self-organizing Agents in Open-ended Environments [15.700383873385892]
動的ワークフローのための「エージェントのツリー」構造を持つ自己組織化エージェントシステム(S-Agents)を導入する。
この構造はエージェントのグループを自律的に調整することができ、オープン環境と動的環境の課題に効率的に対処することができる。
実験の結果,S-AgentsはMinecraft環境において協調的な建築作業や資源収集を行うことができた。
論文 参考訳(メタデータ) (2024-02-07T04:36:31Z) - The Foundations of Computational Management: A Systematic Approach to
Task Automation for the Integration of Artificial Intelligence into Existing
Workflows [55.2480439325792]
本稿では,タスク自動化の体系的アプローチである計算管理を紹介する。
この記事では、ワークフロー内でAIを実装するプロセスを開始するための、ステップバイステップの手順を3つ紹介する。
論文 参考訳(メタデータ) (2024-02-07T01:45:14Z) - TaskBench: Benchmarking Large Language Models for Task Automation [82.2932794189585]
タスク自動化における大規模言語モデル(LLM)の機能を評価するためのフレームワークであるTaskBenchを紹介する。
具体的には、タスクの分解、ツールの選択、パラメータ予測を評価する。
提案手法は, 自動構築と厳密な人的検証を組み合わせることで, 人的評価との整合性を確保する。
論文 参考訳(メタデータ) (2023-11-30T18:02:44Z) - Planning-oriented Autonomous Driving [60.93767791255728]
我々は、最終目標、すなわち自動運転車の計画を追求するために、好ましいフレームワークを考案し、最適化すべきであると主張している。
フルスタック運転タスクをひとつのネットワークに組み込んだ総合的なフレームワークであるUnified Autonomous Driving (UniAD)を紹介した。
論文 参考訳(メタデータ) (2022-12-20T10:47:53Z) - Autonomous Open-Ended Learning of Tasks with Non-Stationary
Interdependencies [64.0476282000118]
固有のモチベーションは、目標間のトレーニング時間を適切に割り当てるタスクに依存しないシグナルを生成することが証明されている。
内在的に動機付けられたオープンエンドラーニングの分野におけるほとんどの研究は、目標が互いに独立しているシナリオに焦点を当てているが、相互依存タスクの自律的な獲得を研究するのはごくわずかである。
特に,タスク間の関係に関する情報をアーキテクチャのより高レベルなレベルで組み込むことの重要性を示す。
そして、自律的に取得したシーケンスを格納する新しい学習層を追加することで、前者を拡張する新しいシステムであるH-GRAILを紹介する。
論文 参考訳(メタデータ) (2022-05-16T10:43:01Z) - Controllable Dynamic Multi-Task Architectures [92.74372912009127]
本稿では,そのアーキテクチャと重みを動的に調整し,所望のタスク選択とリソース制約に適合させる制御可能なマルチタスクネットワークを提案する。
本稿では,タスク親和性と分岐正規化損失を利用した2つのハイパーネットの非交互トレーニングを提案し,入力の嗜好を取り入れ,適応重み付き木構造モデルを予測する。
論文 参考訳(メタデータ) (2022-03-28T17:56:40Z) - Evolving Hierarchical Memory-Prediction Machines in Multi-Task
Reinforcement Learning [4.030910640265943]
行動エージェントは、時間とともに様々な環境や目的にまたがって一般化されなければならない。
遺伝的プログラミングを用いて、制御文献から6つのユニークな環境で動作可能な、高度に一般化されたエージェントを進化させる。
進化するプログラムにおける創発的階層構造は、時間分解とメモリ上の問題環境の符号化を成功させるマルチタスクエージェントをもたらすことを示す。
論文 参考訳(メタデータ) (2021-06-23T21:34:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。