論文の概要: Hierarchical Auto-Organizing System for Open-Ended Multi-Agent Navigation
- arxiv url: http://arxiv.org/abs/2403.08282v2
- Date: Mon, 18 Mar 2024 05:03:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 23:24:38.734745
- Title: Hierarchical Auto-Organizing System for Open-Ended Multi-Agent Navigation
- Title(参考訳): オープンエンディングマルチエージェントナビゲーションのための階層的自己組織化システム
- Authors: Zhonghan Zhao, Kewei Chen, Dongxu Guo, Wenhao Chai, Tian Ye, Yanting Zhang, Gaoang Wang,
- Abstract要約: Minecraftにおけるマルチエージェント組織のための階層的自動組織ナビゲーションシステムを設計する。
Minecraft環境では、探索や探索を含む一連のナビゲーションタスクも設計しています。
私たちは、具体的AIの境界を押し進め、より人間的な組織構造へと移行する、具体的組織の開発を目指しています。
- 参考スコア(独自算出の注目度): 12.753472502707153
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the dynamic and unpredictable open-world setting, navigating complex environments in Minecraft poses significant challenges for multi-agent systems. Agents must interact with the environment and coordinate their actions with other agents to achieve common objectives. However, traditional approaches often struggle to efficiently manage inter-agent communication and task distribution, crucial for effective multi-agent navigation. Furthermore, processing and integrating multi-modal information (such as visual, textual, and auditory data) is essential for agents to comprehend their goals and navigate the environment successfully and fully. To address this issue, we design the HAS framework to auto-organize groups of LLM-based agents to complete navigation tasks. In our approach, we devise a hierarchical auto-organizing navigation system, which is characterized by 1) a hierarchical system for multi-agent organization, ensuring centralized planning and decentralized execution; 2) an auto-organizing and intra-communication mechanism, enabling dynamic group adjustment under subtasks; 3) a multi-modal information platform, facilitating multi-modal perception to perform the three navigation tasks with one system. To assess organizational behavior, we design a series of navigation tasks in the Minecraft environment, which includes searching and exploring. We aim to develop embodied organizations that push the boundaries of embodied AI, moving it towards a more human-like organizational structure.
- Abstract(参考訳): 動的で予測不可能なオープンワールド設定のため、Minecraftの複雑な環境をナビゲートすることは、マルチエージェントシステムに重大な課題をもたらす。
エージェントは環境と対話し、共通の目的を達成するために他のエージェントと行動を調整する必要がある。
しかし、従来のアプローチは、効果的なマルチエージェントナビゲーションに不可欠な、エージェント間通信とタスクの分散を効率的に管理するのに苦労することが多い。
さらに,マルチモーダル情報(視覚的,テキスト的,聴覚的データなど)の処理と統合は,エージェントが目標を理解し,環境をうまくかつ完全にナビゲートする上で不可欠である。
この問題に対処するため,我々はLSMをベースとしたエージェント群を自動編成してナビゲーションタスクを完了するためのHASフレームワークを設計した。
提案手法では,階層的な自己組織型ナビゲーションシステムを考案した。
1 マルチエージェント組織のための階層的システムで、中央集権的計画及び分散実行を確保すること。
2) サブタスク下での動的グループ調整を可能にする自己組織的・内部コミュニケーション機構
3)マルチモーダル情報プラットフォームは,3つのナビゲーションタスクを1つのシステムで実行するためのマルチモーダル認識を容易にする。
組織行動を評価するため,マインクラフト環境において探索・探索を含む一連のナビゲーションタスクを設計する。
私たちは、具体的AIの境界を押し進め、より人間的な組織構造へと移行する、具体的組織の開発を目指しています。
関連論文リスト
- PC-Agent: A Hierarchical Multi-Agent Collaboration Framework for Complex Task Automation on PC [98.82146219495792]
本稿では,PC-Agentという階層型エージェントフレームワークを提案する。
認識の観点からは,現在のMLLMのスクリーンショットコンテンツに対する認識能力の不十分さを克服するために,アクティブ知覚モジュール(APM)を考案する。
意思決定の観点から、複雑なユーザ命令や相互依存サブタスクをより効果的に扱うために、階層的なマルチエージェント協調アーキテクチャを提案する。
論文 参考訳(メタデータ) (2025-02-20T05:41:55Z) - Autonomous Deep Agent [0.7489814067742621]
Deep Agentは、複雑なマルチフェーズタスクを管理するために設計された高度な自律AIシステムである。
システムの基盤は階層型タスクDAGフレームワーク上に構築されています。
Deep Agentは、自己管理型AIシステムにおいて、新しいパラダイムを確立する。
論文 参考訳(メタデータ) (2025-02-10T21:46:54Z) - LLM-Powered Decentralized Generative Agents with Adaptive Hierarchical Knowledge Graph for Cooperative Planning [12.996741471128539]
動的オープンワールドシナリオにおける長期協力のためのインテリジェントエージェントの開発は、マルチエージェントシステムにおける大きな課題である。
本稿では,分散適応型知識グラフメモリと構造化通信システム(DAMCS)を,新しいマルチエージェントクラフト環境において提案する。
我々の生成エージェントはLLM(Large Language Models)を利用しており、長期計画と推論のために外部知識と言語を活用することで従来のMARLエージェントよりもスケーラブルである。
論文 参考訳(メタデータ) (2025-02-08T05:26:02Z) - Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence [79.5316642687565]
既存のマルチエージェントフレームワークは、多種多様なサードパーティエージェントの統合に苦慮することが多い。
我々はこれらの制限に対処する新しいフレームワークであるInternet of Agents (IoA)を提案する。
IoAはエージェント統合プロトコル、インスタントメッセージのようなアーキテクチャ設計、エージェントのチーム化と会話フロー制御のための動的メカニズムを導入している。
論文 参考訳(メタデータ) (2024-07-09T17:33:24Z) - CAMON: Cooperative Agents for Multi-Object Navigation with LLM-based Conversations [22.79813240034754]
大規模言語モデル(LLM)は、目覚ましい理解と計画能力を示した。
本稿では,LLM対応通信と協調を利用した分散マルチエージェントナビゲーションのためのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-30T09:14:33Z) - QuadrupedGPT: Towards a Versatile Quadruped Agent in Open-ended Worlds [51.05639500325598]
ペットに匹敵するアジリティで多様なコマンドに従うように設計されたQuadrupedGPTを紹介します。
エージェントは多種多様なタスクを処理し,複雑な指示を行う能力を示し,多種多様四重化エージェントの開発に向けた重要な一歩である。
論文 参考訳(メタデータ) (2024-06-24T12:14:24Z) - Mobile-Agent-v2: Mobile Device Operation Assistant with Effective Navigation via Multi-Agent Collaboration [52.25473993987409]
モバイルデバイス操作支援のためのマルチエージェントアーキテクチャであるMobile-Agent-v2を提案する。
アーキテクチャは、計画エージェント、決定エージェント、反射エージェントの3つのエージェントから構成される。
単一エージェントアーキテクチャと比較して,Mobile-Agent-v2ではタスク完了率が30%以上向上していることを示す。
論文 参考訳(メタデータ) (2024-06-03T05:50:00Z) - AgentScope: A Flexible yet Robust Multi-Agent Platform [66.64116117163755]
AgentScopeは、メッセージ交換をコアコミュニケーションメカニズムとする、開発者中心のマルチエージェントプラットフォームである。
豊富な構文ツール、組み込みエージェントとサービス機能、アプリケーションのデモとユーティリティモニタのためのユーザフレンドリなインターフェース、ゼロコードプログラミングワークステーション、自動プロンプトチューニング機構により、開発とデプロイメントの両方の障壁は大幅に低下した。
論文 参考訳(メタデータ) (2024-02-21T04:11:28Z) - AutoAgents: A Framework for Automatic Agent Generation [27.74332323317923]
AutoAgentsは、さまざまなタスクに応じてAIチームを構築するために、複数の専門エージェントを適応的に生成し、コーディネートする革新的なフレームワークである。
各種ベンチマーク実験により,AutoAgentsは既存のマルチエージェント手法よりも一貫性と正確な解を生成することが示された。
論文 参考訳(メタデータ) (2023-09-29T14:46:30Z) - DC-MRTA: Decentralized Multi-Robot Task Allocation and Navigation in
Complex Environments [55.204450019073036]
本稿では,倉庫環境における移動ロボットのためのタスク割り当てと分散ナビゲーションアルゴリズムを提案する。
本稿では,共同分散タスク割り当てとナビゲーションの問題について考察し,それを解決するための2段階のアプローチを提案する。
ロボットの衝突のない軌道の計算では,タスク完了時間において最大14%の改善と最大40%の改善が観察される。
論文 参考訳(メタデータ) (2022-09-07T00:35:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。