論文の概要: SAFE: Self-Supervised Anomaly Detection Framework for Intrusion Detection
- arxiv url: http://arxiv.org/abs/2502.07119v1
- Date: Mon, 10 Feb 2025 23:20:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-12 14:08:22.583889
- Title: SAFE: Self-Supervised Anomaly Detection Framework for Intrusion Detection
- Title(参考訳): SAFE:侵入検知のための自己監視型異常検出フレームワーク
- Authors: Elvin Li, Zhengli Shang, Onat Gungor, Tajana Rosing,
- Abstract要約: 本稿では,ネットワーク侵入データをイメージライクなフォーマットに変換する新しいフレームワークであるSAFEを紹介する。
SAFEは最先端の異常検出手法であるスケールラーニングベースのDeep Anomaly Detection(SLAD)を最大26.2%向上させる。
また、最先端のSSLベースのネットワーク侵入検出アプローチであるAnomal-Eを、F1スコアで最大23.5%超える。
- 参考スコア(独自算出の注目度): 6.587970321208976
- License:
- Abstract: The proliferation of IoT devices has significantly increased network vulnerabilities, creating an urgent need for effective Intrusion Detection Systems (IDS). Machine Learning-based IDS (ML-IDS) offer advanced detection capabilities but rely on labeled attack data, which limits their ability to identify unknown threats. Self-Supervised Learning (SSL) presents a promising solution by using only normal data to detect patterns and anomalies. This paper introduces SAFE, a novel framework that transforms tabular network intrusion data into an image-like format, enabling Masked Autoencoders (MAEs) to learn robust representations of network behavior. The features extracted by the MAEs are then incorporated into a lightweight novelty detector, enhancing the effectiveness of anomaly detection. Experimental results demonstrate that SAFE outperforms the state-of-the-art anomaly detection method, Scale Learning-based Deep Anomaly Detection method (SLAD), by up to 26.2% and surpasses the state-of-the-art SSL-based network intrusion detection approach, Anomal-E, by up to 23.5% in F1-score.
- Abstract(参考訳): IoTデバイスの普及はネットワークの脆弱性を大幅に増加させ、効果的な侵入検知システム(IDS)の緊急ニーズを生み出している。
機械学習ベースのIDS(ML-IDS)は高度な検出機能を提供するが、ラベル付きアタックデータに依存しており、未知の脅威を特定する能力を制限する。
Self-Supervised Learning (SSL)は、通常のデータのみを使用してパターンや異常を検出することで、有望なソリューションを提供する。
本稿では,表層ネットワークの侵入データをイメージライクなフォーマットに変換する新しいフレームワークであるSAFEを紹介し,Masked Autoencoders(MAE)がネットワーク動作の堅牢な表現を学習できるようにする。
そして、MAEによって抽出された特徴を軽量なノベルティ検出器に組み込み、異常検出の有効性を高める。
実験の結果,SAFEは最先端の異常検出手法であるスケールラーニングベースのDeep Anomaly Detection法(SLAD)を最大26.2%上回り,最先端のSSLベースのネットワーク侵入検出手法であるAnomal-Eを最大23.5%上回った。
関連論文リスト
- Comprehensive Botnet Detection by Mitigating Adversarial Attacks, Navigating the Subtleties of Perturbation Distances and Fortifying Predictions with Conformal Layers [1.6001193161043425]
ボットネット(Botnet)は、悪意あるアクターによって制御されるコンピュータネットワークで、重要なサイバーセキュリティ上の課題を提示する。
本研究は、機械学習ベースのボットネット検出システムを弱体化させることを目的として、攻撃者が引き起こす高度な敵操作に対処する。
ISCXデータセットとISOTデータセットに基づいてトレーニングされた機械学習とディープラーニングアルゴリズムを活用するフローベース検出アプローチを導入する。
論文 参考訳(メタデータ) (2024-09-01T08:53:21Z) - Enhancing Code Vulnerability Detection via Vulnerability-Preserving Data Augmentation [29.72520866016839]
ソースコードの脆弱性検出は、潜在的な攻撃からソフトウェアシステムを保護するための固有の脆弱性を特定することを目的としている。
多くの先行研究は、様々な脆弱性の特徴を見落とし、問題をバイナリ(0-1)分類タスクに単純化した。
FGVulDetは、さまざまな脆弱性タイプの特徴を識別するために複数の分類器を使用し、その出力を組み合わせて特定の脆弱性タイプを特定する。
FGVulDetはGitHubの大規模なデータセットでトレーニングされており、5種類の脆弱性を含んでいる。
論文 参考訳(メタデータ) (2024-04-15T09:10:52Z) - X-CBA: Explainability Aided CatBoosted Anomal-E for Intrusion Detection System [2.556190321164248]
Intrusion Detection Systemsにおける機械学習(ML)モデルとディープラーニング(DL)モデルの使用は、不透明な意思決定による信頼の欠如につながっている。
本稿では、グラフニューラルネットワーク(GNN)の構造的利点を活用して、ネットワークトラフィックデータを効率的に処理する新しい説明可能なIDS手法であるX-CBAを提案する。
本手法は、脅威検出の99.47%で高精度に達成し、その分析結果の明確で実用的な説明を提供する。
論文 参考訳(メタデータ) (2024-02-01T18:29:16Z) - A near-autonomous and incremental intrusion detection system through active learning of known and unknown attacks [2.686686221415684]
侵入検知は、セキュリティ専門家の伝統的な慣行であるが、まだ対処すべき問題がいくつかある。
本稿では、未知の攻撃と未知の攻撃の両方を適応的かつ漸進的に検出するハイブリッド侵入検知システム(IDS)のアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-10-26T14:37:54Z) - Effective Intrusion Detection in Highly Imbalanced IoT Networks with
Lightweight S2CGAN-IDS [48.353590166168686]
モノのインターネット(IoT)ネットワークは、異常なトラフィックよりも遥かに良質なトラフィックを含んでいる。
既存研究の多くは、少数民族の検出率を向上させるために、多数民族の検出率を犠牲にすることに焦点を当てている。
我々はS2CGAN-IDSという軽量なフレームワークを提案し、データ空間と特徴空間の両方においてマイノリティなカテゴリの数を拡大する。
論文 参考訳(メタデータ) (2023-06-06T14:19:23Z) - ASSET: Robust Backdoor Data Detection Across a Multiplicity of Deep
Learning Paradigms [39.753721029332326]
バックドアデータ検出は、エンドツーエンドの教師あり学習(SL)設定で伝統的に研究されている。
近年,ラベル付きデータの必要性の低さから,自己教師付き学習(SSL)や転送学習(TL)の普及が進んでいる。
既存の検出手法の性能は様々な攻撃や毒素比で大きく異なり、すべて最先端のクリーンラベル攻撃では失敗する。
論文 参考訳(メタデータ) (2023-02-22T14:43:33Z) - Robustness Testing of Data and Knowledge Driven Anomaly Detection in
Cyber-Physical Systems [2.088376060651494]
本稿では,安全クリティカルCPSにおけるMLに基づく異常検出手法のロバスト性を評価するための予備的結果を提案する。
我々は、ドメイン知識(例えば、安全でないシステムの振る舞い)とMLモデルを統合することによって、精度と透明性を犠牲にすることなく、異常検出の堅牢性を向上させることができるかどうかを仮説として検証する。
論文 参考訳(メタデータ) (2022-04-20T02:02:56Z) - Automated Identification of Vulnerable Devices in Networks using Traffic
Data and Deep Learning [30.536369182792516]
脆弱性データベースのデータと組み合わせたデバイスタイプの識別は、ネットワーク内の脆弱なiotデバイスを特定できる。
信頼性の高いIoTデバイスタイプ識別のための2つの深層学習手法を提案し,評価する。
論文 参考訳(メタデータ) (2021-02-16T14:49:34Z) - Uncertainty-Aware Deep Calibrated Salient Object Detection [74.58153220370527]
既存のディープニューラルネットワークに基づくサルエントオブジェクト検出(SOD)手法は主に高いネットワーク精度の追求に重点を置いている。
これらの手法は、信頼不均衡問題として知られるネットワーク精度と予測信頼の間のギャップを見落としている。
我々は,不確実性を考慮した深部SODネットワークを導入し,深部SODネットワークの過信を防止するための2つの戦略を提案する。
論文 参考訳(メタデータ) (2020-12-10T23:28:36Z) - A cognitive based Intrusion detection system [0.0]
侵入検知は、コンピュータネットワークのセキュリティを提供する重要なメカニズムの1つである。
本稿では,Deep Neural Network Ans Supportctor Machine Classifierに基づく新しい手法を提案する。
提案手法は, 侵入検知に類似した手法により, より精度良く攻撃を予測できる。
論文 参考訳(メタデータ) (2020-05-19T13:30:30Z) - BiDet: An Efficient Binarized Object Detector [96.19708396510894]
本稿では,効率的な物体検出のためのバイナライズニューラルネットワークのBiDetを提案する。
我々のBiDetは、冗長除去による物体検出にバイナリニューラルネットワークの表現能力を完全に活用している。
我々の手法は、最先端のバイナリニューラルネットワークを大きなマージンで上回る。
論文 参考訳(メタデータ) (2020-03-09T08:16:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。