論文の概要: Feature Importance Depends on Properties of the Data: Towards Choosing the Correct Explanations for Your Data and Decision Trees based Models
- arxiv url: http://arxiv.org/abs/2502.07153v1
- Date: Tue, 11 Feb 2025 00:29:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-12 14:09:22.311953
- Title: Feature Importance Depends on Properties of the Data: Towards Choosing the Correct Explanations for Your Data and Decision Trees based Models
- Title(参考訳): データの性質に係わる特徴的重要性--データと決定木に基づくモデルに対する正しい説明の選択に向けて
- Authors: Célia Wafa Ayad, Thomas Bonnier, Benjamin Bosch, Sonali Parbhoo, Jesse Read,
- Abstract要約: 局所的な説明法によって提供される特徴重要度推定の質を評価する。
これらの手法により得られた特徴重要度評価の規模と指標に顕著な差異が認められた。
評価はこれらの制限を強調し,様々な説明手法の適合性と信頼性に関する貴重な知見を提供する。
- 参考スコア(独自算出の注目度): 3.8246193345000226
- License:
- Abstract: In order to ensure the reliability of the explanations of machine learning models, it is crucial to establish their advantages and limits and in which case each of these methods outperform. However, the current understanding of when and how each method of explanation can be used is insufficient. To fill this gap, we perform a comprehensive empirical evaluation by synthesizing multiple datasets with the desired properties. Our main objective is to assess the quality of feature importance estimates provided by local explanation methods, which are used to explain predictions made by decision tree-based models. By analyzing the results obtained from synthetic datasets as well as publicly available binary classification datasets, we observe notable disparities in the magnitude and sign of the feature importance estimates generated by these methods. Moreover, we find that these estimates are sensitive to specific properties present in the data. Although some model hyper-parameters do not significantly influence feature importance assignment, it is important to recognize that each method of explanation has limitations in specific contexts. Our assessment highlights these limitations and provides valuable insight into the suitability and reliability of different explanatory methods in various scenarios.
- Abstract(参考訳): 機械学習モデルの説明の信頼性を確保するためには、それらの利点と限界を確立することが不可欠である。
しかし, それぞれの説明方法がいつ, どのように使用されるかという現在の理解は不十分である。
このギャップを埋めるために、複数のデータセットを所望の特性で合成し、総合的な経験的評価を行う。
本研究の目的は,決定木モデルによる予測を記述した局所的説明手法によって提供される特徴重要度推定の質を評価することである。
合成データセットと公開二分分類データセットから得られた結果を解析することにより、これらの手法によって生成された特徴重要度推定の規模と符号の顕著な相違を観察する。
さらに、これらの推定値は、データに存在する特定の特性に敏感であることがわかった。
いくつかのモデルハイパーパラメータは特徴量割当に大きな影響を与えないが、それぞれの説明法が特定の文脈に制限があることを認識することが重要である。
評価はこれらの制約を強調し,様々なシナリオにおける様々な説明手法の適合性と信頼性に関する貴重な知見を提供する。
関連論文リスト
- Explaining the Unexplained: Revealing Hidden Correlations for Better Interpretability [1.8274323268621635]
Real Explainer(RealExp)は、Shapley値を個々の特徴と特徴相関の重要度に分解する、解釈可能性の手法である。
RealExpは、個々の特徴とそれらの相互作用を正確に定量化することで、解釈可能性を高める。
論文 参考訳(メタデータ) (2024-12-02T10:50:50Z) - LaPLACE: Probabilistic Local Model-Agnostic Causal Explanations [1.0370398945228227]
本稿では,機械学習モデルに対する確率論的原因・効果説明を提供するLaPLACE-Explainerを紹介する。
LaPLACE-Explainerコンポーネントはマルコフ毛布の概念を利用して、関連する特徴と非関連する特徴の間の統計的境界を確立する。
提案手法は,LIME と SHAP の局所的精度と特徴の整合性の観点から,因果的説明と性能を向上する。
論文 参考訳(メタデータ) (2023-10-01T04:09:59Z) - Inherent Inconsistencies of Feature Importance [6.02357145653815]
特徴重要度は、予測結果に対する個々の特徴の寄与にスコアを割り当てる手法である。
本稿では,特徴重要度スコアの異なる文脈間のコヒーレントな関係を確立するために設計された公理的枠組みを提案する。
論文 参考訳(メタデータ) (2022-06-16T14:21:51Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
大規模知識グラフから抽出した情報に基づく自己監督は、言語モデルの一般化を改善することが示されている。
本研究では,言語モデルに適用可能な合成データを生成するための知識サンプリング戦略とサイズの影響について検討する。
論文 参考訳(メタデータ) (2022-05-21T19:49:04Z) - Selecting the suitable resampling strategy for imbalanced data
classification regarding dataset properties [62.997667081978825]
医学、情報検索、サイバーセキュリティ、ソーシャルメディアなどの多くのアプリケーションドメインでは、分類モデルの導入に使用されるデータセットは、各クラスのインスタンスの不平等な分布を持つことが多い。
この状況は不均衡データ分類と呼ばれ、少数民族の例では予測性能が低い。
オーバーサンプリングとアンダーサンプリングの技術は、各クラスの例の数とバランスをとることでこの問題に対処する、よく知られた戦略である。
論文 参考訳(メタデータ) (2021-12-15T18:56:39Z) - Discriminative Attribution from Counterfactuals [64.94009515033984]
本稿では,特徴属性と反実的説明を組み合わせたニューラルネットワークの解釈可能性について述べる。
本手法は,特徴属性法の性能を客観的に評価するために有効であることを示す。
論文 参考訳(メタデータ) (2021-09-28T00:53:34Z) - Inferring feature importance with uncertainties in high-dimensional data [0.0]
推定器における不確実性を含む個々の特徴の重要性を推定するためのShapley値に基づくフレームワークを提案する。
我々は最近発表されたSAGEの機能重要度尺度に基づいて構築し、木モデルの再サンプリングなしに推定できるサブSAGEを導入する。
論文 参考訳(メタデータ) (2021-09-02T11:57:34Z) - Information Theoretic Measures for Fairness-aware Feature Selection [27.06618125828978]
我々は,特徴の精度と識別的影響に関する情報理論に基づく,公平性を考慮した特徴選択のためのフレームワークを開発する。
具体的には、この機能が正確性や非差別的判断にどのように影響するかを定量化する、各機能に対する公平性ユーティリティスコアを設計することを目的としています。
論文 参考訳(メタデータ) (2021-06-01T20:11:54Z) - Interpretable Multi-dataset Evaluation for Named Entity Recognition [110.64368106131062]
本稿では,名前付きエンティティ認識(NER)タスクに対する一般的な評価手法を提案する。
提案手法は,モデルとデータセットの違いと,それらの間の相互作用を解釈することを可能にする。
分析ツールを利用可能にすることで、将来の研究者が同様の分析を実行し、この分野の進歩を促進することができる。
論文 参考訳(メタデータ) (2020-11-13T10:53:27Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
データ管理の統合コンポーネントにおける公平性について検討する。
本稿では,データセットの公平性を保証する特徴のサブコレクションを同定する手法を提案する。
論文 参考訳(メタデータ) (2020-06-10T20:20:10Z) - Evaluations and Methods for Explanation through Robustness Analysis [117.7235152610957]
分析による特徴に基づく説明の新たな評価基準を確立する。
我々は、緩やかに必要であり、予測に十分である新しい説明を得る。
我々は、現在の予測をターゲットクラスに移動させる一連の特徴を抽出するために、説明を拡張します。
論文 参考訳(メタデータ) (2020-05-31T05:52:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。