Foreign-Object Detection in High-Voltage Transmission Line Based on Improved YOLOv8m
- URL: http://arxiv.org/abs/2502.07175v1
- Date: Tue, 11 Feb 2025 01:58:32 GMT
- Title: Foreign-Object Detection in High-Voltage Transmission Line Based on Improved YOLOv8m
- Authors: Zhenyue Wang, Guowu Yuan, Hao Zhou, Yi Ma, Yutang Ma,
- Abstract summary: This paper proposes an improved YOLOv8m-based model for detecting foreign objects on transmission lines.
Experiments are conducted on a dataset collected from Yunnan Power Grid.
- Score: 19.080692737423693
- License:
- Abstract: The safe operation of high-voltage transmission lines ensures the power grid's security. Various foreign objects attached to the transmission lines, such as balloons, kites and nesting birds, can significantly affect the safe and stable operation of high-voltage transmission lines. With the advancement of computer vision technology, periodic automatic inspection of foreign objects is efficient and necessary. Existing detection methods have low accuracy because foreign objects at-tached to the transmission lines are complex, including occlusions, diverse object types, significant scale variations, and complex backgrounds. In response to the practical needs of the Yunnan Branch of China Southern Power Grid Co., Ltd., this paper proposes an improved YOLOv8m-based model for detecting foreign objects on transmission lines. Experiments are conducted on a dataset collected from Yunnan Power Grid. The proposed model enhances the original YOLOv8m by in-corporating a Global Attention Module (GAM) into the backbone to focus on occluded foreign objects, replacing the SPPF module with the SPPCSPC module to augment the model's multiscale feature extraction capability, and introducing the Focal-EIoU loss function to address the issue of high- and low-quality sample imbalances. These improvements accelerate model convergence and enhance detection accuracy. The experimental results demonstrate that our proposed model achieves a 2.7% increase in mAP_0.5, a 4% increase in mAP_0.5:0.95, and a 6% increase in recall.
Related papers
- Improved YOLOv7 model for insulator defect detection [24.775038970508078]
This paper proposes an improved YOLOv7 model for multi-type insulator defect detection.
The proposed model exhibits enhancements across various performance metrics.
arXiv Detail & Related papers (2025-02-11T02:09:30Z) - Improved YOLOv5s model for key components detection of power transmission lines [23.73288455723377]
This paper proposes an improved object detection model based on the YOLOv5s (You Only Look Once Version 5 Small) model to improve the detection accuracy of key components of transmission lines.
Our improved method's mAP (mean average precision) reached 98.1%, the precision reached 97.5%, the recall reached 94.4%, and the detection rate reached 84.8 FPS (frames per second)
arXiv Detail & Related papers (2025-02-10T03:29:34Z) - Function Approximation for Reinforcement Learning Controller for Energy from Spread Waves [69.9104427437916]
Multi-generator Wave Energy Converters (WEC) must handle multiple simultaneous waves coming from different directions called spread waves.
These complex devices need controllers with multiple objectives of energy capture efficiency, reduction of structural stress to limit maintenance, and proactive protection against high waves.
In this paper, we explore different function approximations for the policy and critic networks in modeling the sequential nature of the system dynamics.
arXiv Detail & Related papers (2024-04-17T02:04:10Z) - MoE-FFD: Mixture of Experts for Generalized and Parameter-Efficient Face Forgery Detection [54.545054873239295]
Deepfakes have recently raised significant trust issues and security concerns among the public.
ViT-based methods take advantage of the expressivity of transformers, achieving superior detection performance.
This work introduces Mixture-of-Experts modules for Face Forgery Detection (MoE-FFD), a generalized yet parameter-efficient ViT-based approach.
arXiv Detail & Related papers (2024-04-12T13:02:08Z) - MambaAD: Exploring State Space Models for Multi-class Unsupervised Anomaly Detection [53.03687787922032]
Mamba-based models with superior long-range modeling and linear efficiency have garnered substantial attention.
MambaAD consists of a pre-trained encoder and a Mamba decoder featuring (Locality-Enhanced State Space) LSS modules at multi-scales.
The proposed LSS module, integrating parallel cascaded (Hybrid State Space) HSS blocks and multi- kernel convolutions operations, effectively captures both long-range and local information.
arXiv Detail & Related papers (2024-04-09T18:28:55Z) - Improved YOLOv5 Based on Attention Mechanism and FasterNet for Foreign Object Detection on Railway and Airway tracks [0.0]
This paper introduces an improved YOLOv5 architecture incorporating FasterNet and attention mechanisms to enhance the detection of foreign objects on railways and Airport runways.
The dataset aims to improve the recognition capabilities of foreign object targets.
arXiv Detail & Related papers (2024-03-13T13:07:14Z) - SIRST-5K: Exploring Massive Negatives Synthesis with Self-supervised
Learning for Robust Infrared Small Target Detection [53.19618419772467]
Single-frame infrared small target (SIRST) detection aims to recognize small targets from clutter backgrounds.
With the development of Transformer, the scale of SIRST models is constantly increasing.
With a rich diversity of infrared small target data, our algorithm significantly improves the model performance and convergence speed.
arXiv Detail & Related papers (2024-03-08T16:14:54Z) - Deep Learning-based Embedded Intrusion Detection System for Automotive
CAN [12.084121187559864]
Various intrusion detection approaches have been proposed to detect and tackle such threats, with machine learning models proving highly effective.
We propose a hybrid FPGA-based ECU approach that can transparently integrate IDS functionality through a dedicated off-the-shelf hardware accelerator.
Our results show that the proposed approach provides an average accuracy of over 99% across multiple attack datasets with 0.64% false detection rates.
arXiv Detail & Related papers (2024-01-19T13:13:38Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - A Computer Vision Enabled damage detection model with improved YOLOv5
based on Transformer Prediction Head [0.0]
Current state-of-the-art deep learning (DL)-based damage detection models often lack superior feature extraction capability in complex and noisy environments.
DenseSPH-YOLOv5 is a real-time DL-based high-performance damage detection model where DenseNet blocks have been integrated with the backbone.
DenseSPH-YOLOv5 obtains a mean average precision (mAP) value of 85.25 %, F1-score of 81.18 %, and precision (P) value of 89.51 % outperforming current state-of-the-art models.
arXiv Detail & Related papers (2023-03-07T22:53:36Z) - Federated Learning in the Sky: Joint Power Allocation and Scheduling
with UAV Swarms [98.78553146823829]
Unmanned aerial vehicle (UAV) swarms must exploit machine learning (ML) in order to execute various tasks.
In this paper, a novel framework is proposed to implement distributed learning (FL) algorithms within a UAV swarm.
arXiv Detail & Related papers (2020-02-19T14:04:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.