論文の概要: Tab2Visual: Overcoming Limited Data in Tabular Data Classification Using Deep Learning with Visual Representations
- arxiv url: http://arxiv.org/abs/2502.07181v1
- Date: Tue, 11 Feb 2025 02:12:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-12 14:09:00.313624
- Title: Tab2Visual: Overcoming Limited Data in Tabular Data Classification Using Deep Learning with Visual Representations
- Title(参考訳): Tab2Visual:ビジュアル表現を用いたディープラーニングを用いた語彙データ分類における制限データ克服
- Authors: Ahmed Mamdouh, Moumen El-Melegy, Samia Ali, Ron Kikinis,
- Abstract要約: 異種表データを視覚表現に変換する新しい手法であるTab2Visualを提案する。
提案手法を多種多様なデータセットに対して広範囲に評価し,その性能を幅広い機械学習アルゴリズムと比較した。
- 参考スコア(独自算出の注目度): 0.09999629695552192
- License:
- Abstract: This research addresses the challenge of limited data in tabular data classification, particularly prevalent in domains with constraints like healthcare. We propose Tab2Visual, a novel approach that transforms heterogeneous tabular data into visual representations, enabling the application of powerful deep learning models. Tab2Visual effectively addresses data scarcity by incorporating novel image augmentation techniques and facilitating transfer learning. We extensively evaluate the proposed approach on diverse tabular datasets, comparing its performance against a wide range of machine learning algorithms, including classical methods, tree-based ensembles, and state-of-the-art deep learning models specifically designed for tabular data. We also perform an in-depth analysis of factors influencing Tab2Visual's performance. Our experimental results demonstrate that Tab2Visual outperforms other methods in classification problems with limited tabular data.
- Abstract(参考訳): この研究は、特に医療などの制約のある領域で広く使われている、表形式のデータ分類における限られたデータの課題に対処する。
異種表データを視覚表現に変換する新しいアプローチであるTab2Visualを提案し、強力なディープラーニングモデルの適用を可能にする。
Tab2Visualは、新しい画像拡張技術を導入し、転送学習を容易にすることで、データの不足に効果的に対処する。
提案手法は,従来の手法や木に基づくアンサンブル,そして表層データに特化して設計された最先端のディープラーニングモデルなど,幅広い機械学習アルゴリズムと比較し,多様な表層データセットに対するアプローチを広範に評価する。
また,Tab2Visualの性能に影響を及ぼす要因を詳細に分析する。
実験の結果,Tab2Visualは限定的な表データを用いた分類問題において,他の手法よりも優れていた。
関連論文リスト
- Table2Image: Interpretable Tabular Data Classification with Realistic Image Transformations [5.62508658491325]
本稿では,表形式のデータをリアルかつ多様な画像表現に変換する新しいフレームワークであるTable2Imageを紹介する。
また、元のデータとその変換された画像表現からの洞察を統合する、解釈可能性フレームワークを提案する。
論文 参考訳(メタデータ) (2024-12-09T07:24:31Z) - TabDeco: A Comprehensive Contrastive Framework for Decoupled Representations in Tabular Data [5.98480077860174]
本研究では,行と列をまたいだアテンションベースの符号化手法であるTabDecoを紹介する。
革新的な機能の分離によって、TabDecoは既存のディープラーニングメソッドを一貫して上回っている。
論文 参考訳(メタデータ) (2024-11-17T18:42:46Z) - Knowledge-Aware Reasoning over Multimodal Semi-structured Tables [85.24395216111462]
本研究では、現在のAIモデルがマルチモーダルな構造化データに基づいて知識を考慮した推論を行うことができるかどうかを検討する。
この目的のために設計された新しいデータセットであるMMTabQAを紹介する。
我々の実験は、複数のテキストと画像の入力を効果的に統合し解釈する上で、現在のAIモデルに対する重大な課題を浮き彫りにしている。
論文 参考訳(メタデータ) (2024-08-25T15:17:43Z) - A Closer Look at Deep Learning Methods on Tabular Datasets [52.50778536274327]
タブラルデータは、機械学習のさまざまな領域で広く使われている。
Deep Neural Network(DNN)ベースの手法は最近、有望なパフォーマンスを実証した。
我々は,32種類の最先端の深部・木質の手法を比較し,その平均性能を複数の基準で評価した。
論文 参考訳(メタデータ) (2024-07-01T04:24:07Z) - Learning Representations without Compositional Assumptions [79.12273403390311]
本稿では,特徴集合をグラフノードとして表現し,それらの関係を学習可能なエッジとして表現することで,特徴集合の依存関係を学習するデータ駆動型アプローチを提案する。
また,複数のビューから情報を動的に集約するために,より小さな潜在グラフを学習する新しい階層グラフオートエンコーダLEGATOを導入する。
論文 参考訳(メタデータ) (2023-05-31T10:36:10Z) - TabGSL: Graph Structure Learning for Tabular Data Prediction [10.66048003460524]
本稿では,グラフ構造学習(Tabular Graph Structure Learning, TabGSL)という新しい手法を提案する。
30のベンチマークデータセットで実施された実験では、TabGSLがツリーベースモデルと最近のディープラーニングベースモデルの両方を著しく上回っていることが示されている。
論文 参考訳(メタデータ) (2023-05-25T08:33:48Z) - Cross-view Graph Contrastive Representation Learning on Partially
Aligned Multi-view Data [52.491074276133325]
マルチビュー表現学習は、過去数十年間で急速に発展し、多くの分野に応用されてきた。
本稿では,多視点情報を統合してデータアライメントを行い,潜在表現を学習する,新しいクロスビューグラフコントラスト学習フレームワークを提案する。
複数の実データを用いて実験を行い,クラスタリングおよび分類作業における提案手法の有効性を示した。
論文 参考訳(メタデータ) (2022-11-08T09:19:32Z) - PTab: Using the Pre-trained Language Model for Modeling Tabular Data [5.791972449406902]
近年の研究では、ニューラルネットワークモデルがタブラルデータの文脈表現の学習に有効であることが示されている。
本稿では,事前学習言語モデルを用いて,タブラルデータをモデル化する新しいフレームワークPTabを提案する。
提案手法は,最先端のベースラインに比べて,教師付き設定における平均AUCスコアが向上した。
論文 参考訳(メタデータ) (2022-09-15T08:58:42Z) - Transfer Learning with Deep Tabular Models [66.67017691983182]
上流データにより、グラフニューラルネットワークはGBDTモデルよりも決定的な優位性を示す。
そこで本研究では,表在化学習のための現実的な診断ベンチマークを提案する。
上流と下流の特徴セットが異なる場合の擬似特徴法を提案する。
論文 参考訳(メタデータ) (2022-06-30T14:24:32Z) - SubTab: Subsetting Features of Tabular Data for Self-Supervised
Representation Learning [5.5616364225463055]
私たちはTabular Data(SubTab)のサブセット機能である新しいフレームワークを紹介します。
本稿では,タブラルデータ(SubTab)のサブセット機能である新しいフレームワークを提案する。
我々は、自動エンコーダ設定で、その機能の一部分からデータを再構成することで、その基盤となる表現をよりよく捉えることができると論じている。
論文 参考訳(メタデータ) (2021-10-08T20:11:09Z) - Auto-weighted Multi-view Feature Selection with Graph Optimization [90.26124046530319]
グラフ学習に基づく新しい教師なしマルチビュー特徴選択モデルを提案する。
1) 特徴選択過程において, 異なる視点で共有されたコンセンサス類似度グラフが学習される。
各種データセットを用いた実験により,提案手法が最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-04-11T03:25:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。