論文の概要: Exploring Neural Network Pruning with Screening Methods
- arxiv url: http://arxiv.org/abs/2502.07189v1
- Date: Tue, 11 Feb 2025 02:31:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-12 14:10:07.009623
- Title: Exploring Neural Network Pruning with Screening Methods
- Title(参考訳): スクリーニング手法によるニューラルネットワークプルーニングの探索
- Authors: Mingyuan Wang, Yangzi Guo, Sida Liu, Yanwen Xiao,
- Abstract要約: 現代のディープラーニングモデルは数千万のパラメータを持ち、推論プロセスはリソース集約化されている。
本稿では,非必須パラメータを除去するネットワーク・プルーニング・フレームワークの提案と評価を行う。
提案するフレームワークは,従来のネットワークと比較して,競争力のあるリーンネットワークを生成する。
- 参考スコア(独自算出の注目度): 3.443622476405787
- License:
- Abstract: Deep neural networks (DNNs) such as convolutional neural networks (CNNs) for visual tasks, recurrent neural networks (RNNs) for sequence data, and transformer models for rich linguistic or multimodal tasks, achieved unprecedented performance on a wide range of tasks. The impressive performance of modern DNNs is partially attributed to their sheer scale. The latest deep learning models have tens to hundreds of millions of parameters which makes the inference processes resource-intensive. The high computational complexity of these networks prevents their deployment on resource-limited devices such as mobile platforms, IoT devices, and edge computing systems because these devices require energy-efficient and real-time processing capabilities. This paper proposes and evaluates a network pruning framework that eliminates non-essential parameters based on a statistical analysis of network component significance across classification categories. The proposed method uses screening methods coupled with a weighted scheme to assess connection and channel contributions for unstructured and structured pruning which allows for the elimination of unnecessary network elements without significantly degrading model performance. Extensive experimental validation on real-world vision datasets for both fully connected neural networks (FNNs) and CNNs has shown that the proposed framework produces competitive lean networks compared to the original networks. Moreover, the proposed framework outperforms state-of-art network pruning methods in two out of three cases.
- Abstract(参考訳): ビジュアルタスクのための畳み込みニューラルネットワーク(CNN)、シーケンスデータのためのリカレントニューラルネットワーク(RNN)、リッチ言語やマルチモーダルタスクのためのトランスフォーマーモデルのようなディープニューラルネットワーク(DNN)は、幅広いタスクにおいて前例のないパフォーマンスを達成した。
現代のDNNの印象的なパフォーマンスは、その厳格なスケールによるところが大きい。
最新のディープラーニングモデルには数億から数億のパラメータがあり、推論プロセスはリソース集約化されている。
これらのネットワークの高い計算複雑性は、エネルギー効率とリアルタイム処理能力を必要とするため、モバイルプラットフォーム、IoTデバイス、エッジコンピューティングシステムなどのリソース制限されたデバイスへのデプロイメントを防止する。
本稿では,分類カテゴリ間のネットワーク成分の統計的分析に基づいて,非意味パラメータを除去するネットワークプルーニングフレームワークを提案し,評価する。
提案手法は, モデル性能を著しく低下させることなく不要なネットワーク要素の除去を可能にする, 未構造化および構造化プルーニングにおける接続とチャネルのコントリビューションを評価するための重み付きスキームと組み合わせたスクリーニング手法を用いている。
フルコネクテッドニューラルネットワーク(FNN)とCNNの両方を対象とした実世界のビジョンデータセットに対する大規模な実験的検証により、提案したフレームワークが元のネットワークと比較して競争力のあるリーンネットワークを生成することが示された。
さらに,提案手法は,3例中2例において,最先端のネットワークプルーニング手法より優れていた。
関連論文リスト
- Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
ニューロモルフィックコンピューティングは、スパイキングニューラルネットワーク(SNN)を使用して推論タスクを実行する。
スパイクニューロン間で交換される各スパイクに小さなペイロードを埋め込むことで、エネルギー消費を増大させることなく推論精度を高めることができる。
分割コンピューティング — SNNを2つのデバイスに分割する — は、有望なソリューションだ。
本稿では,マルチレベルSNNを用いたニューロモルフィック無線分割コンピューティングアーキテクチャの総合的研究について述べる。
論文 参考訳(メタデータ) (2024-11-07T14:08:35Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - EvSegSNN: Neuromorphic Semantic Segmentation for Event Data [0.6138671548064356]
EvSegSNN は、Parametric Leaky Integrate と Fire のニューロンに依存した、生物学的に検証可能なエンコーダ-デコーダU字型アーキテクチャである。
本稿では,スパイキングニューラルネットワークとイベントカメラを組み合わせることによって,エンド・ツー・エンドのバイオインスパイアされたセマンティックセマンティックセマンティクス手法を提案する。
DDD17で実施された実験は、EvSegSNNがMIoUの観点から最も近い最先端モデルを上回っていることを示している。
論文 参考訳(メタデータ) (2024-06-20T10:36:24Z) - A Faster Approach to Spiking Deep Convolutional Neural Networks [0.0]
スパイキングニューラルネットワーク(SNN)は、現在のディープニューラルネットワークよりも脳に近いダイナミクスを持つ。
ネットワークのランタイムと精度を改善するために,従来の作業に基づくネットワーク構造を提案する。
論文 参考訳(メタデータ) (2022-10-31T16:13:15Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
イベントベースの視覚センサは、画像フレームではなく、イベントストリームの局所的な画素単位の明るさ変化を符号化する。
イベントベースセンサーによる物体認識の最近の進歩は、ディープニューラルネットワークの変換によるものである。
本稿では、イベントベースのパターン認識とオブジェクト検出のためのディープニューラルネットワークのエンドツーエンドトレーニングのためのハイブリッドアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-12-06T23:45:58Z) - CondenseNeXt: An Ultra-Efficient Deep Neural Network for Embedded
Systems [0.0]
畳み込みニューラルネットワーク(英: Convolutional Neural Network, CNN)は、画像センサが捉えた視覚画像の分析に広く用いられているディープニューラルネットワーク(DNN)のクラスである。
本稿では,組込みシステム上でのリアルタイム推論のために,既存のCNNアーキテクチャの性能を改善するために,深層畳み込みニューラルネットワークアーキテクチャの新しい変種を提案する。
論文 参考訳(メタデータ) (2021-12-01T18:20:52Z) - Learning Frequency-aware Dynamic Network for Efficient Super-Resolution [56.98668484450857]
本稿では、離散コサイン変換(dct)領域の係数に応じて入力を複数の部分に分割する新しい周波数認識動的ネットワークについて検討する。
実際、高周波部は高価な操作で処理され、低周波部は計算負荷を軽減するために安価な操作が割り当てられる。
ベンチマークSISRモデルおよびデータセット上での実験は、周波数認識動的ネットワークが様々なSISRニューラルネットワークに使用できることを示している。
論文 参考訳(メタデータ) (2021-03-15T12:54:26Z) - Encoding the latent posterior of Bayesian Neural Networks for
uncertainty quantification [10.727102755903616]
我々は,複雑なコンピュータビジョンアーキテクチャに適した効率的な深部BNNを目指している。
可変オートエンコーダ(VAE)を利用して、各ネットワーク層におけるパラメータの相互作用と潜在分布を学習する。
我々のアプローチであるLatent-Posterior BNN(LP-BNN)は、最近のBatchEnsemble法と互換性があり、高い効率(トレーニングとテストの両方における計算とメモリ)のアンサンブルをもたらす。
論文 参考訳(メタデータ) (2020-12-04T19:50:09Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
本稿では、オーバーパラメータ化ディープニューラルネットワーク(DNN)のための新しい平均場フレームワークを提案する。
このフレームワークでは、DNNは連続的な極限におけるその特徴に対する確率測度と関数によって表現される。
本稿では、標準DNNとResidual Network(Res-Net)アーキテクチャを通してフレームワークを説明する。
論文 参考訳(メタデータ) (2020-07-03T01:37:16Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - Exploring the Connection Between Binary and Spiking Neural Networks [1.329054857829016]
両立ニューラルネットワークとスパイクニューラルネットワークの訓練における最近のアルゴリズムの進歩を橋渡しする。
極端量子化システムにおけるスパイキングニューラルネットワークのトレーニングは,大規模データセット上でのほぼ完全な精度向上をもたらすことを示す。
論文 参考訳(メタデータ) (2020-02-24T03:46:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。