論文の概要: Neuromorphic Wireless Split Computing with Multi-Level Spikes
- arxiv url: http://arxiv.org/abs/2411.04728v2
- Date: Mon, 03 Feb 2025 15:51:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-04 16:07:49.267516
- Title: Neuromorphic Wireless Split Computing with Multi-Level Spikes
- Title(参考訳): マルチレベルスパイクスを用いたニューロモルフィックワイヤレススプリットコンピューティング
- Authors: Dengyu Wu, Jiechen Chen, Bipin Rajendran, H. Vincent Poor, Osvaldo Simeone,
- Abstract要約: ニューロモルフィックコンピューティングは、スパイキングニューラルネットワーク(SNN)を使用して推論タスクを実行する。
スパイクニューロン間で交換される各スパイクに小さなペイロードを埋め込むことで、エネルギー消費を増大させることなく推論精度を高めることができる。
分割コンピューティング — SNNを2つのデバイスに分割する — は、有望なソリューションだ。
本稿では,マルチレベルSNNを用いたニューロモルフィック無線分割コンピューティングアーキテクチャの総合的研究について述べる。
- 参考スコア(独自算出の注目度): 69.73249913506042
- License:
- Abstract: Inspired by biological processes, neuromorphic computing leverages spiking neural networks (SNNs) to perform inference tasks, offering significant efficiency gains for workloads involving sequential data. Recent advances in hardware and software have shown that embedding a small payload within each spike exchanged between spiking neurons can enhance inference accuracy without increasing energy consumption. To scale neuromorphic computing to larger workloads, split computing - where an SNN is partitioned across two devices - is a promising solution. In such architectures, the device hosting the initial layers must transmit information about the spikes generated by its output neurons to the second device. This establishes a trade-off between the benefits of multi-level spikes, which carry additional payload information, and the communication resources required for transmitting extra bits between devices. This paper presents the first comprehensive study of a neuromorphic wireless split computing architecture that employs multi-level SNNs. We propose digital and analog modulation schemes for an orthogonal frequency division multiplexing (OFDM) radio interface to enable efficient communication. Simulation and experimental results using software-defined radios reveal performance improvements achieved by multi-level SNN models and provide insights into the optimal payload size as a function of the connection quality between the transmitter and receiver.
- Abstract(参考訳): 生物学的プロセスにインスパイアされたニューロモルフィックコンピューティングは、スパイクニューラルネットワーク(SNN)を活用して推論タスクを実行し、シーケンシャルデータを含むワークロードの大幅な効率向上を提供する。
近年のハードウェアとソフトウェアの進歩により、スパイクニューロン間で交換される各スパイクに小さなペイロードを埋め込むことで、エネルギー消費を増大させることなく推論精度を向上させることが示されている。
ニューロモルフィックコンピューティングをより大きなワークロードにスケールするために、分割コンピューティング — SNNが2つのデバイスに分割される — は、有望なソリューションである。
このようなアーキテクチャでは、初期層をホストするデバイスは、その出力ニューロンによって生成されたスパイクに関する情報を第2のデバイスに送信しなければならない。
これにより、追加のペイロード情報を運ぶマルチレベルスパイクの利点と、デバイス間で余分なビットを送信するのに必要な通信リソースのトレードオフが確立される。
本稿では,マルチレベルSNNを用いたニューロモルフィック無線分割コンピューティングアーキテクチャの総合的研究について述べる。
直交周波数分割多重化(OFDM)無線インタフェースのためのディジタルおよびアナログ変調方式を提案し,効率的な通信を実現する。
ソフトウェア定義無線を用いたシミュレーションと実験により,マルチレベルSNNモデルにより達成された性能向上が明らかになり,送信機と受信機間の接続品質の関数として最適なペイロードサイズに関する洞察が得られた。
関連論文リスト
- Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
本稿では,高精度かつエネルギー効率の高い単発多次元高調波検索のための変換に基づくニューロモルフィックアルゴリズムの可能性について検討する。
複雑な値の畳み込み層と活性化をスパイクニューラルネットワーク(SNN)に変換する新しい手法を開発した。
変換されたSNNは、元のCNNに比べて性能が低下し、ほぼ5倍の電力効率を実現している。
論文 参考訳(メタデータ) (2024-12-05T09:41:33Z) - Neuromorphic Split Computing with Wake-Up Radios: Architecture and Design via Digital Twinning [97.99077847606624]
本研究は,遠隔・無線接続型NPUからなる分割計算機システムに,覚醒無線機構を組み込んだ新しいアーキテクチャを提案する。
覚醒無線に基づくニューロモルフィックスプリットコンピューティングシステムの設計における重要な課題は、検知、覚醒信号検出、意思決定のためのしきい値の選択である。
論文 参考訳(メタデータ) (2024-04-02T10:19:04Z) - Energy-Efficient On-Board Radio Resource Management for Satellite
Communications via Neuromorphic Computing [59.40731173370976]
本研究は,エネルギー効率のよい脳誘発機械学習モデルのオンボード無線リソース管理への応用について検討する。
関連するワークロードでは、Loihi 2に実装されたスパイクニューラルネットワーク(SNN)の方が精度が高く、CNNベースのリファレンスプラットフォームと比較して消費電力が100ドル以上削減される。
論文 参考訳(メタデータ) (2023-08-22T03:13:57Z) - Neuromorphic Wireless Cognition: Event-Driven Semantic Communications
for Remote Inference [32.0035037154674]
本稿ではニューロモルフィックな無線インターネット・オブ・Thingsシステムのためのエンドツーエンドの設計を提案する。
各センサ装置は、ニューロモルフィックセンサと、スパイキングニューラルネットワーク(SNN)と、複数のアンテナを備えたインパルス無線送信機を備える。
パイロット、SNNの符号化、SNNの復号化、ハイパーネットワークは、複数のチャネル実現を通じて共同で訓練される。
論文 参考訳(メタデータ) (2022-06-13T11:13:39Z) - Deep Convolutional Learning-Aided Detector for Generalized Frequency
Division Multiplexing with Index Modulation [0.0]
提案手法は、まずゼロフォース検出器(ZF)を用いて受信信号を前処理し、その後、畳み込みニューラルネットワーク(CNN)と完全連結ニューラルネットワーク(FCNN)からなるニューラルネットワークを用いる。
FCNN部は2つの完全に接続された層しか使用せず、複雑さとBER(bit error rate)パフォーマンスのトレードオフをもたらすことができる。
提案したディープ畳み込みニューラルネットワークに基づく検出・復調方式は,ZF検出器よりも高いBER性能を示し,複雑性が増大することが実証されている。
論文 参考訳(メタデータ) (2022-02-06T22:18:42Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
イベントベースの視覚センサは、画像フレームではなく、イベントストリームの局所的な画素単位の明るさ変化を符号化する。
イベントベースセンサーによる物体認識の最近の進歩は、ディープニューラルネットワークの変換によるものである。
本稿では、イベントベースのパターン認識とオブジェクト検出のためのディープニューラルネットワークのエンドツーエンドトレーニングのためのハイブリッドアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-12-06T23:45:58Z) - Spiking Neural Networks -- Part III: Neuromorphic Communications [38.518936229794214]
ますますワイヤレスに接続されるデバイスの存在は、機械学習の進歩を輸出しようと努力している。
帯域制限されたチャネルを介して接続されたバッテリ駆動デバイス上での学習と推論のための機械学習モデルの実装は依然として困難である。
本稿では、スパイキングニューラルネットワーク(SNN)がこれらのオープンな問題に対処する2つの方法を探る。
論文 参考訳(メタデータ) (2020-10-27T11:52:35Z) - Inference with Artificial Neural Networks on Analog Neuromorphic
Hardware [0.0]
BrainScaleS-2 ASICは混合信号ニューロンとシナプス回路から構成される。
システムは、人工ニューラルネットワークのベクトル行列乗算と累積モードでも動作する。
論文 参考訳(メタデータ) (2020-06-23T17:25:06Z) - Flexible Transmitter Network [84.90891046882213]
現在のニューラルネットワークはMPモデルに基づいて構築されており、通常はニューロンを他のニューロンから受信した信号の実際の重み付け集約上での活性化関数の実行として定式化する。
本稿では,フレキシブル・トランスミッタ(FT)モデルを提案する。
本稿では、最も一般的な完全接続型フィードフォワードアーキテクチャ上に構築された、フレキシブルトランスミッタネットワーク(FTNet)について述べる。
論文 参考訳(メタデータ) (2020-04-08T06:55:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。