論文の概要: Enhancing Video Understanding: Deep Neural Networks for Spatiotemporal Analysis
- arxiv url: http://arxiv.org/abs/2502.07277v1
- Date: Tue, 11 Feb 2025 05:44:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-12 14:09:48.967021
- Title: Enhancing Video Understanding: Deep Neural Networks for Spatiotemporal Analysis
- Title(参考訳): ビデオ理解の強化:時空間分析のためのディープニューラルネットワーク
- Authors: Amir Hosein Fadaei, Mohammad-Reza A. Dehaqani,
- Abstract要約: ディープニューラルネットワークは、特徴抽出とビデオ記述という領域において、奨励的な結果を示している。
我々は、重要なビデオ理解と行動認識データセットをレビューし、比較する。
- 参考スコア(独自算出の注目度): 0.8287206589886879
- License:
- Abstract: It's no secret that video has become the primary way we share information online. That's why there's been a surge in demand for algorithms that can analyze and understand video content. It's a trend going to continue as video continues to dominate the digital landscape. These algorithms will extract and classify related features from the video and will use them to describe the events and objects in the video. Deep neural networks have displayed encouraging outcomes in the realm of feature extraction and video description. This paper will explore the spatiotemporal features found in videos and recent advancements in deep neural networks in video understanding. We will review some of the main trends in video understanding models and their structural design, the main problems, and some offered solutions in this topic. We will also review and compare significant video understanding and action recognition datasets.
- Abstract(参考訳): ビデオが、私たちがオンラインで情報を共有する主要な方法になったことは周知の事実だ。
だからこそ、ビデオコンテンツを分析して理解するアルゴリズムの需要が急増しているのです。
ビデオがデジタルの世界を支配し続けるにつれ、この傾向は続くでしょう。
これらのアルゴリズムは、ビデオから関連する機能を抽出し、分類し、ビデオ内のイベントやオブジェクトを記述するために使用する。
ディープニューラルネットワークは、特徴抽出とビデオ記述という領域において、奨励的な結果を示している。
本稿では、ビデオの時空間的特徴と、ビデオ理解におけるディープニューラルネットワークの最近の進歩について述べる。
ビデオ理解モデルの主なトレンドと構造設計、主な問題、そしてこのトピックで提案されたソリューションについてレビューする。
また、重要なビデオ理解と行動認識データセットをレビューし、比較する。
関連論文リスト
- Deep video representation learning: a survey [4.9589745881431435]
近年,視覚データに対する逐次的特徴学習法が提案され,その特徴と欠点を比較して一般的なビデオ解析を行った。
ビデオ解析と理解を含むコンピュータビジョンタスクにおいて、ビデオの効果的な機能を構築することが根本的な問題である。
論文 参考訳(メタデータ) (2024-05-10T16:20:11Z) - Contextual Explainable Video Representation:\\Human Perception-based
Understanding [10.172332586182792]
人間の知覚過程をアクター、オブジェクト、環境のモデリングに組み込むアプローチについて議論する。
ビデオ理解における人間の知覚に基づく文脈表現の有効性を示すために,ビデオ文のキャプションと時間的行動検出を選択する。
論文 参考訳(メタデータ) (2022-12-12T19:29:07Z) - How Would The Viewer Feel? Estimating Wellbeing From Video Scenarios [73.24092762346095]
情緒応答と主観的幸福感に注釈を付けた6万本以上のビデオを備えた大規模データセットを2つ導入した。
Video Cognitive Empathyデータセットには、微粒な感情応答の分布のためのアノテーションが含まれており、モデルが感情状態の詳細な理解を得ることができる。
Video to Valenceデータセットには、ビデオ間の相対的な快適性のアノテーションが含まれている。
論文 参考訳(メタデータ) (2022-10-18T17:58:25Z) - Video Manipulations Beyond Faces: A Dataset with Human-Machine Analysis [60.13902294276283]
我々は826の動画(413のリアルと413の操作)からなるデータセットであるVideoShamを提示する。
既存のディープフェイクデータセットの多くは、2種類の顔操作にのみ焦点をあてている。
我々の分析によると、最先端の操作検出アルゴリズムはいくつかの特定の攻撃に対してのみ有効であり、VideoShamではうまくスケールしない。
論文 参考訳(メタデータ) (2022-07-26T17:39:04Z) - Highlight Timestamp Detection Model for Comedy Videos via Multimodal
Sentiment Analysis [1.6181085766811525]
本研究では,この分野での最先端性能を得るためのマルチモーダル構造を提案する。
マルチモーダルビデオ理解のためのベンチマークをいくつか選択し、最適な性能を求めるのに最適なモデルを適用した。
論文 参考訳(メタデータ) (2021-05-28T08:39:19Z) - Video Summarization Using Deep Neural Networks: A Survey [72.98424352264904]
ビデオ要約技術は、ビデオコンテンツの最も有益な部分を選択して、簡潔で完全なシノプシスを作成することを目指しています。
本研究は,この領域における最近の進歩に着目し,既存の深層学習に基づく総括的映像要約手法の包括的調査を行う。
論文 参考訳(メタデータ) (2021-01-15T11:41:29Z) - Self-supervised Video Representation Learning by Pace Prediction [48.029602040786685]
本稿では,ビデオペース予測による自己指導型映像表現学習の課題に対処する。
人間の視覚系がビデオのペースに敏感であるという観察に由来する。
我々は、異なるペースでトレーニングクリップをランダムにサンプリングし、ニューラルネットワークに各ビデオクリップのペースを特定するよう依頼する。
論文 参考訳(メタデータ) (2020-08-13T12:40:24Z) - An End-to-End Visual-Audio Attention Network for Emotion Recognition in
User-Generated Videos [64.91614454412257]
畳み込みニューラルネットワーク(CNN)に基づくエンドツーエンドの映像感情認識を提案する。
具体的には,空間的,チャネル的,時間的注意を視覚的に3D CNNに統合し,時間的注意をオーディオ2D CNNに組み込む新しいアーキテクチャである,深層ビジュアル・オーディオ・アテンション・ネットワーク(VAANet)を開発した。
論文 参考訳(メタデータ) (2020-02-12T15:33:59Z) - Convolutional Hierarchical Attention Network for Query-Focused Video
Summarization [74.48782934264094]
本稿では、ユーザのクエリと長いビデオを入力として取り込む、クエリ中心のビデオ要約の課題に対処する。
本稿では,特徴符号化ネットワークとクエリ関連計算モジュールの2つの部分からなる畳み込み階層型注意ネットワーク(CHAN)を提案する。
符号化ネットワークでは,局所的な自己認識機構と問合せ対応のグローバルアテンション機構を備えた畳み込みネットワークを用いて,各ショットの視覚情報を学習する。
論文 参考訳(メタデータ) (2020-01-31T04:30:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。