Flow Matching for Collaborative Filtering
- URL: http://arxiv.org/abs/2502.07303v1
- Date: Tue, 11 Feb 2025 07:01:19 GMT
- Title: Flow Matching for Collaborative Filtering
- Authors: Chengkai Liu, Yangtian Zhang, Jianling Wang, Rex Ying, James Caverlee,
- Abstract summary: FlowCF is a flow-based recommendation system for collaborative filtering.
It achieves state-of-the-art recommendation accuracy across various datasets with the fastest inference speed.
- Score: 27.79581814287762
- License:
- Abstract: Generative models have shown great promise in collaborative filtering by capturing the underlying distribution of user interests and preferences. However, existing approaches struggle with inaccurate posterior approximations and misalignment with the discrete nature of recommendation data, limiting their expressiveness and real-world performance. To address these limitations, we propose FlowCF, a novel flow-based recommendation system leveraging flow matching for collaborative filtering. We tailor flow matching to the unique challenges in recommendation through two key innovations: (1) a behavior-guided prior that aligns with user behavior patterns to handle the sparse and heterogeneous user-item interactions, and (2) a discrete flow framework to preserve the binary nature of implicit feedback while maintaining the benefits of flow matching, such as stable training and efficient inference. Extensive experiments demonstrate that FlowCF achieves state-of-the-art recommendation accuracy across various datasets with the fastest inference speed, making it a compelling approach for real-world recommender systems.
Related papers
- Online Clustering of Dueling Bandits [59.09590979404303]
We introduce the first "clustering of dueling bandit algorithms" to enable collaborative decision-making based on preference feedback.
We propose two novel algorithms: (1) Clustering of Linear Dueling Bandits (COLDB) which models the user reward functions as linear functions of the context vectors, and (2) Clustering of Neural Dueling Bandits (CONDB) which uses a neural network to model complex, non-linear user reward functions.
arXiv Detail & Related papers (2025-02-04T07:55:41Z) - Learning Recommender Systems with Soft Target: A Decoupled Perspective [49.83787742587449]
We propose a novel decoupled soft label optimization framework to consider the objectives as two aspects by leveraging soft labels.
We present a sensible soft-label generation algorithm that models a label propagation algorithm to explore users' latent interests in unobserved feedback via neighbors.
arXiv Detail & Related papers (2024-10-09T04:20:15Z) - Collaborative Filtering Based on Diffusion Models: Unveiling the Potential of High-Order Connectivity [10.683635786183894]
CF-Diff is a new diffusion model-based collaborative filtering method.
It is capable of making full use of collaborative signals along with multi-hop neighbors.
It achieves remarkable gains up to 7.29% compared to the best competitor.
arXiv Detail & Related papers (2024-04-22T14:49:46Z) - Prototypical Contrastive Learning through Alignment and Uniformity for
Recommendation [6.790779112538357]
We present underlinePrototypical contrastive learning through underlineAlignment and underlineUniformity for recommendation.
Specifically, we first propose prototypes as a latent space to ensure consistency across different augmentations from the origin graph.
The absence of explicit negatives means that directly optimizing the consistency loss between instance and prototype could easily result in dimensional collapse issues.
arXiv Detail & Related papers (2024-02-03T08:19:26Z) - Online Boosting Adaptive Learning under Concept Drift for Multistream
Classification [34.64751041290346]
Multistream classification poses significant challenges due to the necessity for rapid adaptation in dynamic streaming processes with concept drift.
We propose a novel Online Boosting Adaptive Learning (OBAL) method that adaptively learns the dynamic correlation among different streams.
arXiv Detail & Related papers (2023-12-17T23:10:39Z) - Guided Flows for Generative Modeling and Decision Making [55.42634941614435]
We show that Guided Flows significantly improves the sample quality in conditional image generation and zero-shot text synthesis-to-speech.
Notably, we are first to apply flow models for plan generation in the offline reinforcement learning setting ax speedup in compared to diffusion models.
arXiv Detail & Related papers (2023-11-22T15:07:59Z) - Interactive Graph Convolutional Filtering [79.34979767405979]
Interactive Recommender Systems (IRS) have been increasingly used in various domains, including personalized article recommendation, social media, and online advertising.
These problems are exacerbated by the cold start problem and data sparsity problem.
Existing Multi-Armed Bandit methods, despite their carefully designed exploration strategies, often struggle to provide satisfactory results in the early stages.
Our proposed method extends interactive collaborative filtering into the graph model to enhance the performance of collaborative filtering between users and items.
arXiv Detail & Related papers (2023-09-04T09:02:31Z) - HCFRec: Hash Collaborative Filtering via Normalized Flow with Structural
Consensus for Efficient Recommendation [23.73674947905047]
Hash-based collaborative filtering (Hash-CF) approaches employ efficient Hamming distance of learned binary representations of users and items to accelerate recommendations.
We propose HCFRec, a novel Hash-CF approach for effective and efficient recommendations.
arXiv Detail & Related papers (2022-05-24T12:51:52Z) - Broad Recommender System: An Efficient Nonlinear Collaborative Filtering
Approach [56.12815715932561]
We propose a new broad recommender system called Broad Collaborative Filtering (BroadCF)
Instead of Deep Neural Networks (DNNs), Broad Learning System (BLS) is used as a mapping function to learn the complex nonlinear relationships between users and items.
Extensive experiments conducted on seven benchmark datasets have confirmed the effectiveness of the proposed BroadCF algorithm.
arXiv Detail & Related papers (2022-04-20T01:25:08Z) - Contrastive Self-supervised Sequential Recommendation with Robust
Augmentation [101.25762166231904]
Sequential Recommendationdescribes a set of techniques to model dynamic user behavior in order to predict future interactions in sequential user data.
Old and new issues remain, including data-sparsity and noisy data.
We propose Contrastive Self-Supervised Learning for sequential Recommendation (CoSeRec)
arXiv Detail & Related papers (2021-08-14T07:15:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.