論文の概要: White Hat Search Engine Optimization using Large Language Models
- arxiv url: http://arxiv.org/abs/2502.07315v2
- Date: Sun, 23 Feb 2025 09:44:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 18:15:44.085721
- Title: White Hat Search Engine Optimization using Large Language Models
- Title(参考訳): 大規模言語モデルを用いたホワイトハット検索エンジン最適化
- Authors: Niv Bardas, Tommy Mordo, Oren Kurland, Moshe Tennenholtz, Gal Zur,
- Abstract要約: 本稿では,genAIに基づく新しいホワイトハット検索エンジン最適化手法を提案し,その経験的メリットを実証する。
この記事はSymbolic Interaction誌に初めて掲載された。
- 参考スコア(独自算出の注目度): 10.757199109227175
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present novel white-hat search engine optimization techniques based on genAI and demonstrate their empirical merits.
- Abstract(参考訳): 本稿では,genAIに基づく新しいホワイトハット検索エンジン最適化手法を提案し,その経験的メリットを実証する。
関連論文リスト
- Automatic Prompt Optimization via Heuristic Search: A Survey [13.332569343755075]
大規模言語モデルは、様々な自然言語処理タスクにおいて顕著な成果をもたらしています。
手動の手法は効果的であるが、通常は直感に頼り、時間とともに自動的にプロンプトを洗練しない。
検索アルゴリズムを用いた自動プロンプト最適化は、人間の監視を最小限に抑えて、システマティックにプロンプトを探索し改善することができる。
論文 参考訳(メタデータ) (2025-02-26T01:42:08Z) - Improving Existing Optimization Algorithms with LLMs [0.9668407688201361]
本稿では,Large Language Models (LLM) が既存の最適化アルゴリズムをどのように拡張するかを検討する。
事前学習した知識を用いて、革新的なバリエーションと実装戦略を提案する能力を示す。
以上の結果から, GPT-4oによる代替案はCMSAのエキスパート設計よりも優れていた。
論文 参考訳(メタデータ) (2025-02-12T10:58:57Z) - Multi-Layer Ranking with Large Language Models for News Source Recommendation [20.069181633869093]
我々はNewsQuoteと呼ばれる新しいデータセットを構築し、ニュース記事の収集から得られた23,571の引用話者ペアで構成されています。
我々は,特定のクエリに関連付けられる可能性に基づいて,専門家の検索として推薦タスクを定式化する。
この結果から,テキスト内学習に基づくLLMランキングと多層ランキングに基づくフィルタを用いることで,推薦システムの予測品質と行動品質を著しく向上することがわかった。
論文 参考訳(メタデータ) (2024-06-17T17:02:34Z) - Discovering Preference Optimization Algorithms with and for Large Language Models [50.843710797024805]
オフライン優先最適化は、LLM(Large Language Model)出力の品質を向上・制御するための重要な手法である。
我々は、人間の介入なしに、新しい最先端の選好最適化アルゴリズムを自動で発見する客観的発見を行う。
実験は、ロジスティックと指数的損失を適応的にブレンドする新しいアルゴリズムであるDiscoPOPの最先端性能を示す。
論文 参考訳(メタデータ) (2024-06-12T16:58:41Z) - The Use of Generative Search Engines for Knowledge Work and Complex Tasks [26.583783763090732]
Bing Copilotを使うタスクのタイプと複雑さをBing Searchと比較して分析する。
発見は、従来の検索エンジンよりも認知の複雑さが高い知識作業タスクのために、人々が生成検索エンジンを使用していることを示している。
論文 参考訳(メタデータ) (2024-03-19T18:17:46Z) - Localized Zeroth-Order Prompt Optimization [54.964765668688806]
そこで我々は,ZOPO(Localized zeroth-order prompt optimization)という新しいアルゴリズムを提案する。
ZOPOはニューラル・タンジェント・カーネルをベースとしたガウス法を標準ゼロ階次最適化に取り入れ、高速な局所最適探索を高速化する。
注目すべきは、ZOPOは最適化性能とクエリ効率の両方の観点から、既存のベースラインを上回っていることだ。
論文 参考訳(メタデータ) (2024-03-05T14:18:15Z) - Large Language Models for the Automated Analysis of Optimization
Algorithms [0.9668407688201361]
最適化アルゴリズムの領域内でのLLM(Large Language Models)の可能性をSTNWebに組み込むことで実証することを目的としている。
これは、最適化アルゴリズムの挙動を可視化するサーチトラジェクトリ・ネットワーク(STN)の生成のためのWebベースのツールである。
論文 参考訳(メタデータ) (2024-02-13T14:05:02Z) - Are Large Language Models Good Prompt Optimizers? [65.48910201816223]
我々は,LLMに基づくPrompt Optimizationの実際のメカニズムを明らかにするために研究を行っている。
以上の結果から, LLMは, 反射中の誤差の真の原因を特定するのに苦慮し, 自己の事前知識に偏っていることが明らかとなった。
我々は、より制御可能な方法でターゲットモデルの振舞いを直接最適化する新しい「自動振舞い最適化」パラダイムを導入する。
論文 参考訳(メタデータ) (2024-02-03T09:48:54Z) - GEO: Generative Engine Optimization [50.45232692363787]
我々は、生成エンジン(GE)の統一的な枠組みを定式化する。
GEは大規模な言語モデル(LLM)を使用して情報を収集し、ユーザクエリに応答する。
生成エンジンは通常、複数のソースから情報を合成し、それらを要約することでクエリを満足する。
我々は、生成エンジン応答におけるコンテンツの可視性向上を支援するために、コンテンツ作成者を支援する最初の新しいパラダイムである生成エンジン最適化(GEO)を紹介する。
論文 参考訳(メタデータ) (2023-11-16T10:06:09Z) - Generating Natural Language Queries for More Effective Systematic Review
Screening Prioritisation [53.77226503675752]
現在の技術状況では、レビューの最終タイトルをクエリとして、BERTベースのニューラルランクラを使用してドキュメントのランク付けに使用しています。
本稿では,ChatGPT や Alpaca などの命令ベース大規模言語モデルによって生成される文書の検索に使用される Boolean クエリやクエリなど,スクリーニングを優先するクエリの代替源について検討する。
私たちのベストアプローチは、スクリーニング時に利用可能な情報に基づいて実現されるだけでなく、最終タイトルと同じような効果があります。
論文 参考訳(メタデータ) (2023-09-11T05:12:14Z) - Hybrid Retrieval and Multi-stage Text Ranking Solution at TREC 2022 Deep
Learning Track [22.81602641419962]
本稿では,ハイブリッドテキスト検索と多段階テキストランキング法について解説する。
ランキング段階では,大規模な事前学習言語モデルに基づく対話型ランキングモデルに加えて,軽量なサブランクモジュールも提案する。
本モデルでは, 通過ランキングと文書ランキングの試験セットにおいて, それぞれ第1位と第4位を達成している。
論文 参考訳(メタデータ) (2023-08-23T09:56:59Z) - Zero-Shot Listwise Document Reranking with a Large Language Model [58.64141622176841]
本稿では,タスク固有の学習データを用いることなく,言語モデル(LRL)を用いたリスワイズ・リランカを提案する。
3つのTRECウェブサーチデータセットの実験により、LRLは第1段検索結果の再ランク付け時にゼロショットポイントワイズ法より優れるだけでなく、最終段再ランカとしても機能することが示された。
論文 参考訳(メタデータ) (2023-05-03T14:45:34Z) - Neural Rankers for Effective Screening Prioritisation in Medical
Systematic Review Literature Search [31.797257552928336]
本稿では,事前学習した言語モデルを,体系的なレビュー文書ランキングタスクに適用する。
経験的分析は、このタスクの従来の方法と比較して、ニューラルネットワークがいかに効果的かを比較する。
以上の結果から,BERTをベースとしたランカは,現在のスクリーニング方法よりも優れていた。
論文 参考訳(メタデータ) (2022-12-18T05:26:40Z) - Efficient Non-Parametric Optimizer Search for Diverse Tasks [93.64739408827604]
興味のあるタスクを直接検索できる,スケーラブルで汎用的なフレームワークを初めて提示する。
基礎となる数学表現の自然木構造に着想を得て、空間を超木に再配置する。
我々は,モンテカルロ法を木探索に適用し,レジェクションサンプリングと等価形状検出を備える。
論文 参考訳(メタデータ) (2022-09-27T17:51:31Z) - CODER: An efficient framework for improving retrieval through
COntextualized Document Embedding Reranking [11.635294568328625]
本稿では,最小計算コストで広範囲の検索モデルの性能を向上させるためのフレームワークを提案する。
ベース密度検索法により抽出された事前計算された文書表現を利用する。
実行時に第一段階のメソッドの上に無視可能な計算オーバーヘッドを発生させ、最先端の高密度検索手法と簡単に組み合わせられるようにする。
論文 参考訳(メタデータ) (2021-12-16T10:25:26Z) - Value Retrieval with Arbitrary Queries for Form-like Documents [50.5532781148902]
フォーム状文書に対する任意のクエリを用いた値検索を提案する。
本手法は,フォームのレイアウトやセマンティクスの理解に基づいて,任意のクエリのターゲット値を予測する。
本稿では,大規模モデル事前学習における文書理解を改善するためのシンプルな文書言語モデリング (simpleDLM) 戦略を提案する。
論文 参考訳(メタデータ) (2021-12-15T01:12:02Z) - Ranking Scientific Papers Using Preference Learning [48.78161994501516]
我々はこれをピアレビューテキストとレビュアースコアに基づく論文ランキング問題とみなした。
ピアレビューに基づいて最終決定を行うための,新しい多面的総合評価フレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-02T19:41:47Z) - Societal Biases in Retrieved Contents: Measurement Framework and
Adversarial Mitigation for BERT Rankers [9.811131801693856]
ランキングモデルの検索したテキスト内容の公平性を測定するための新しいフレームワークを提供する。
本稿では,最先端のbertrankersに適用した逆バイアス緩和手法を提案する。
MARCOベンチマークの結果,全てのランキングモデルの公正度は,ランク付け非依存のベースラインの公平度よりも低いが,検索内容の公平度は,提案した対角トレーニングの適用時に著しく向上することが示された。
論文 参考訳(メタデータ) (2021-04-28T08:53:54Z) - ProphetNet-Ads: A Looking Ahead Strategy for Generative Retrieval Models
in Sponsored Search Engine [123.65646903493614]
生成的検索モデルは、ターゲットライブラリプレフィックスツリー(Trie)のパス上でトークンによる出力トークンを生成する
本稿では,これらの問題を解析し,ProphetNet-Adsと呼ばれる生成検索モデルの今後の戦略を提案する。
最近提案されたトリエ型LSTM生成モデルと比較すると,本モデルの結果と統合結果は,ビームサイズ5でそれぞれ15.58%と18.8%改善した。
論文 参考訳(メタデータ) (2020-10-21T07:03:20Z) - Context-Based Quotation Recommendation [60.93257124507105]
本稿では,新しい文脈対応引用レコメンデーションシステムを提案する。
これは、所定のソース文書から引用可能な段落とトークンの列挙リストを生成する。
音声テキストと関連するニュース記事の収集実験を行う。
論文 参考訳(メタデータ) (2020-05-17T17:49:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。