論文の概要: Zero-Shot Listwise Document Reranking with a Large Language Model
- arxiv url: http://arxiv.org/abs/2305.02156v1
- Date: Wed, 3 May 2023 14:45:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-04 14:36:36.124279
- Title: Zero-Shot Listwise Document Reranking with a Large Language Model
- Title(参考訳): 大規模言語モデルを用いたゼロショットリストワイド文書の改訂
- Authors: Xueguang Ma, Xinyu Zhang, Ronak Pradeep, Jimmy Lin
- Abstract要約: 本稿では,タスク固有の学習データを用いることなく,言語モデル(LRL)を用いたリスワイズ・リランカを提案する。
3つのTRECウェブサーチデータセットの実験により、LRLは第1段検索結果の再ランク付け時にゼロショットポイントワイズ法より優れるだけでなく、最終段再ランカとしても機能することが示された。
- 参考スコア(独自算出の注目度): 58.64141622176841
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Supervised ranking methods based on bi-encoder or cross-encoder architectures
have shown success in multi-stage text ranking tasks, but they require large
amounts of relevance judgments as training data. In this work, we propose
Listwise Reranker with a Large Language Model (LRL), which achieves strong
reranking effectiveness without using any task-specific training data.
Different from the existing pointwise ranking methods, where documents are
scored independently and ranked according to the scores, LRL directly generates
a reordered list of document identifiers given the candidate documents.
Experiments on three TREC web search datasets demonstrate that LRL not only
outperforms zero-shot pointwise methods when reranking first-stage retrieval
results, but can also act as a final-stage reranker to improve the top-ranked
results of a pointwise method for improved efficiency. Additionally, we apply
our approach to subsets of MIRACL, a recent multilingual retrieval dataset,
with results showing its potential to generalize across different languages.
- Abstract(参考訳): バイエンコーダまたはクロスエンコーダアーキテクチャに基づく教師付きランキング手法は、多段階テキストランキングタスクの成功を示しているが、トレーニングデータとして大量の関連性判断を必要とする。
本研究では,タスク固有のトレーニングデータを用いることなく,高いランク付け効率を実現するLarge Language Model (LRL) を用いたリスワイズ・リランカを提案する。
既存のポイントワイドランキング法とは異なり、文書は独立してスコアに従ってランク付けされ、LRLは候補文書に与えられた文書識別子の並べ替えリストを直接生成する。
3つのTRECウェブサーチデータセットの実験により、LRLは第1段階の検索結果の再ランク付け時にゼロショットポイントワイズ法より優れるだけでなく、最終段階のリランカとして機能し、ポイントワイズ法の上位ランク付け結果を改善することで効率を向上することを示した。
さらに、最近の多言語検索データセットであるMIRACLのサブセットにアプローチを適用し、異なる言語にまたがる一般化の可能性を示す。
関連論文リスト
- Self-Calibrated Listwise Reranking with Large Language Models [137.6557607279876]
大規模言語モデル (LLM) はシーケンシャル・ツー・シーケンス・アプローチによってタスクのランク付けに使用されている。
この階調のパラダイムは、より大きな候補集合を反復的に扱うためにスライディングウインドウ戦略を必要とする。
そこで本稿では,LLMを用いた自己校正リストのランク付け手法を提案する。
論文 参考訳(メタデータ) (2024-11-07T10:31:31Z) - Towards Efficient Active Learning in NLP via Pretrained Representations [1.90365714903665]
ファインチューニング大型言語モデル(LLM)は、今や幅広いアプリケーションにおけるテキスト分類の一般的なアプローチである。
能動学習ループ内でのLLMの事前学習表現を用いて,このプロセスを大幅に高速化する。
私たちの戦略は、アクティブな学習ループを通した微調整と同じようなパフォーマンスを得るが、計算コストは桁違いに低い。
論文 参考訳(メタデータ) (2024-02-23T21:28:59Z) - List-aware Reranking-Truncation Joint Model for Search and
Retrieval-augmented Generation [80.12531449946655]
本稿では,2つのタスクを同時に実行可能なRe rank-Truncation joint model(GenRT)を提案する。
GenRTは、エンコーダ-デコーダアーキテクチャに基づく生成パラダイムによるリランクとトランケーションを統合している。
提案手法は,Web検索および検索拡張LLMにおけるリランクタスクとトラルケーションタスクの両方においてSOTA性能を実現する。
論文 参考訳(メタデータ) (2024-02-05T06:52:53Z) - LlamaRec: Two-Stage Recommendation using Large Language Models for
Ranking [10.671747198171136]
ランキングベースレコメンデーション(LlamaRec)のための大規模言語モデルを用いた2段階フレームワークを提案する。
特に,ユーザインタラクション履歴に基づいて候補を検索するために,小規模なシーケンシャルレコメンデータを用いる。
LlamaRecは、推奨パフォーマンスと効率の両方において、データセットの優れたパフォーマンスを一貫して達成している。
論文 参考訳(メタデータ) (2023-10-25T06:23:48Z) - Open-source Large Language Models are Strong Zero-shot Query Likelihood
Models for Document Ranking [36.90911173089409]
大規模言語モデル(LLM)は、効果的なクエリ類似モデル(QLM)として登場した。
本稿では,近年のLLMにおけるゼロショットランキングの有効性について検討する。
LLMをベースとしたQLMとハイブリッドゼロショットレトリバーを統合した,最先端のランキングシステムを提案する。
論文 参考訳(メタデータ) (2023-10-20T02:54:42Z) - AnnoLLM: Making Large Language Models to Be Better Crowdsourced Annotators [98.11286353828525]
GPT-3.5シリーズのモデルは、様々なNLPタスクにまたがる顕著な少数ショットとゼロショットの能力を示している。
本稿では,2段階のアプローチを取り入れたAnnoLLMを提案する。
我々はAnnoLLMを用いた対話型情報検索データセットを構築した。
論文 参考訳(メタデータ) (2023-03-29T17:03:21Z) - Recitation-Augmented Language Models [85.30591349383849]
知識集約型NLPタスクにおいて,RECITEは強力なパラダイムであることを示す。
具体的には、リサイクリングを中間ステップとして活用することにより、新しい最先端性能を実現することができることを示す。
論文 参考訳(メタデータ) (2022-10-04T00:49:20Z) - On Cross-Lingual Retrieval with Multilingual Text Encoders [51.60862829942932]
言語間文書・文検索タスクにおける最先端多言語エンコーダの適合性について検討する。
教師なしのアドホック文と文書レベルのCLIR実験でそれらの性能をベンチマークする。
我々は、ゼロショット言語とドメイン転送CLIR実験のシリーズにおける英語関連データに基づいて、教師付き方式で微調整された多言語エンコーダの評価を行った。
論文 参考訳(メタデータ) (2021-12-21T08:10:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。