論文の概要: CodeI/O: Condensing Reasoning Patterns via Code Input-Output Prediction
- arxiv url: http://arxiv.org/abs/2502.07316v1
- Date: Tue, 11 Feb 2025 07:26:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-12 14:10:14.692306
- Title: CodeI/O: Condensing Reasoning Patterns via Code Input-Output Prediction
- Title(参考訳): CodeI/O: コード入力出力予測による推論パターンの凝縮
- Authors: Junlong Li, Daya Guo, Dejian Yang, Runxin Xu, Yu Wu, Junxian He,
- Abstract要約: 我々は,文脈的に構築されたコードに埋め込まれた多様な推論パターンを凝縮する新しい手法であるCodeI/Oを提案する。
与えられたコードとテストケースを完全に自然言語で予測するためにモデルをトレーニングすることで、それらを普遍的な推論プリミティブに公開します。
実験の結果、CodeI/Oは記号、科学、論理学、数学と数値、常識推論タスクに一貫した改善をもたらすことが示された。
- 参考スコア(独自算出の注目度): 47.17755403213469
- License:
- Abstract: Reasoning is a fundamental capability of Large Language Models. While prior research predominantly focuses on enhancing narrow skills like math or code generation, improving performance on many other reasoning tasks remains challenging due to sparse and fragmented training data. To address this issue, we propose CodeI/O, a novel approach that systematically condenses diverse reasoning patterns inherently embedded in contextually-grounded codes, through transforming the original code into a code input-output prediction format. By training models to predict inputs/outputs given code and test cases entirely in natural language as Chain-of-Thought (CoT) rationales, we expose them to universal reasoning primitives -- like logic flow planning, state-space searching, decision tree traversal, and modular decomposition -- while decoupling structured reasoning from code-specific syntax and preserving procedural rigor. Experimental results demonstrate CodeI/O leads to consistent improvements across symbolic, scientific, logic, math & numerical, and commonsense reasoning tasks. By matching the existing ground-truth outputs or re-executing the code with predicted inputs, we can verify each prediction and further enhance the CoTs through multi-turn revision, resulting in CodeI/O++ and achieving higher performance. Our data and models are available at https://github.com/hkust-nlp/CodeIO.
- Abstract(参考訳): 推論は、大規模言語モデルの基本機能である。
従来の研究は主に数学やコード生成のような狭義のスキルの強化に重点を置いていたが、未成熟で断片化されたトレーニングデータのために、他の多くの推論タスクのパフォーマンス向上は依然として困難である。
この問題に対処するため,我々は,もともとのコードをコード入力出力予測形式に変換することで,文脈的に埋もれたコードに固有の多様な推論パターンを体系的に凝縮する新しい手法であるCodeI/Oを提案する。
Chain-of-Thought(CoT)の合理性として、与えられたコードとテストケースを完全に自然言語で予測するモデルをトレーニングすることで、論理フロー計画、状態空間探索、決定ツリーのトラバーサル、モジュール分解といった、普遍的な推論プリミティブに公開します。
実験の結果、CodeI/Oは記号、科学、論理学、数学と数値、常識推論タスクに一貫した改善をもたらすことが示された。
既存の基幹出力と予測入力とのマッチングや再実行によって,各予測を検証し,マルチターンリビジョンによってCoTをさらに強化し,コードI/O++を実現し,より高いパフォーマンスを実現する。
私たちのデータとモデルはhttps://github.com/hkust-nlp/CodeIO.orgで公開されています。
関連論文リスト
- VisualCoder: Guiding Large Language Models in Code Execution with Fine-grained Multimodal Chain-of-Thought Reasoning [10.70881967278009]
ビジュアル制御フローグラフ (CFG) を用いたマルチモーダルチェイン・オブ・ワットスニペット (CoT) 推論を統合することで,コード推論を強化する,シンプルかつ効果的なアプローチである VisualCoder を導入する。
我々は,参照機構によるマルチモーダルCoT統合の課題に対処し,コードと実行経路の整合性を確保し,プログラム動作予測,エラー検出,出力生成の性能を向上させる。
論文 参考訳(メタデータ) (2024-10-30T19:07:01Z) - When simplicity meets effectiveness: Detecting code comments coherence with word embeddings and LSTM [6.417777780911223]
コードコメントは、プログラマに実用的な情報を提供するため、ソフトウェア開発において重要な役割を果たす。
開発者はコードを更新した後、コメントをそのまま残す傾向があり、2つのアーティファクトの間に相違が生じます。
コードスニペットが与えられたら、そのコメントが一貫性があり、コードの背後にある意図をよく反映しているかどうかを特定することが重要です。
論文 参考訳(メタデータ) (2024-05-25T15:21:27Z) - Decoding at the Speed of Thought: Harnessing Parallel Decoding of Lexical Units for LLMs [57.27982780697922]
大規模言語モデルは、自然言語の理解と生成において例外的な能力を示した。
しかし、それらの生成速度は、その復号過程の本質的にシーケンシャルな性質によって制限される。
本稿では,データ駆動方式で実装された新しいデコーディング手法であるLexical Unit Decodingを紹介する。
論文 参考訳(メタデータ) (2024-05-24T04:35:13Z) - Is Next Token Prediction Sufficient for GPT? Exploration on Code Logic Comprehension [18.919972400933393]
我々は、先進的な事前訓練タスク「Next Token Prediction+」を提案する。
この事前トレーニングに続いて、コードドメイン事前トレーニングモデルであるCode LlamaとStarCoderの両方が、論理的に等価なコード選択タスクとコード補完タスクに大幅に改善されている。
論文 参考訳(メタデータ) (2024-04-13T03:11:07Z) - Comments as Natural Logic Pivots: Improve Code Generation via Comment Perspective [85.48043537327258]
本稿では, MANGO (comMents As Natural loGic pivOts) を提案する。
その結果、MANGOは強いベースラインに基づいてコードパス率を大幅に改善することがわかった。
論理的なコメントの復号化戦略の堅牢性は、考えの連鎖よりも顕著に高い。
論文 参考訳(メタデータ) (2024-04-11T08:30:46Z) - CodeMind: A Framework to Challenge Large Language Models for Code Reasoning [1.4027589547318842]
大規模言語モデル(LLM)のコード推論能力を評価するために設計されたフレームワークであるCodeMindを紹介する。
CodeMindは、Independent Execution Reasoning (IER)、Dependent Execution Reasoning (DER)、Specification Reasoning (SR)の3つのコード推論タスクをサポートしている。
論文 参考訳(メタデータ) (2024-02-15T02:24:46Z) - When Do Program-of-Thoughts Work for Reasoning? [51.2699797837818]
本稿では,コードと推論能力の相関性を測定するために,複雑性に富んだ推論スコア(CIRS)を提案する。
具体的には、抽象構文木を用いて構造情報をエンコードし、論理的複雑性を計算する。
コードはhttps://github.com/zjunlp/EasyInstructのEasyInstructフレームワークに統合される。
論文 参考訳(メタデータ) (2023-08-29T17:22:39Z) - Code Execution with Pre-trained Language Models [88.04688617516827]
コードインテリジェンスのトレーニング済みモデルのほとんどは実行トレースを無視しており、ソースコードと構文構造のみに依存している。
我々は,大規模かつ現実的なPythonデータセットとコード実行タスクを作成するために,突然変異に基づくデータ拡張手法を開発した。
次に、コード実行事前学習とカリキュラム学習を活用して意味理解を強化するトランスフォーマーモデルであるCodeExecutorを提案する。
論文 参考訳(メタデータ) (2023-05-08T10:00:05Z) - Enhancing Semantic Code Search with Multimodal Contrastive Learning and
Soft Data Augmentation [50.14232079160476]
コード検索のためのマルチモーダルコントラスト学習とソフトデータ拡張を用いた新しい手法を提案する。
我々は,6つのプログラミング言語を用いた大規模データセットにおけるアプローチの有効性を評価するために,広範囲な実験を行った。
論文 参考訳(メタデータ) (2022-04-07T08:49:27Z) - Recursive Decoding: A Situated Cognition Approach to Compositional
Generation in Grounded Language Understanding [0.0]
本稿では,Seq2seqモデルをトレーニングおよび使用するための新しい手順であるRecursive Decodingを提案する。
1回のパスで出力シーケンス全体を生成するのではなく、モデルは一度に1つのトークンを予測するように訓練される。
RDは、gSCANの2つの以前に無視された一般化タスクに対して劇的な改善をもたらす。
論文 参考訳(メタデータ) (2022-01-27T19:13:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。