Stable generative modeling using Schrödinger bridges
- URL: http://arxiv.org/abs/2401.04372v3
- Date: Wed, 23 Oct 2024 12:19:16 GMT
- Title: Stable generative modeling using Schrödinger bridges
- Authors: Georg A. Gottwald, Fengyi Li, Youssef Marzouk, Sebastian Reich,
- Abstract summary: We propose a generative model combining Schr"odinger bridges and Langevin dynamics.
Our framework can be naturally extended to generate conditional samples and to Bayesian inference problems.
- Score: 0.22499166814992438
- License:
- Abstract: We consider the problem of sampling from an unknown distribution for which only a sufficiently large number of training samples are available. Such settings have recently drawn considerable interest in the context of generative modelling and Bayesian inference. In this paper, we propose a generative model combining Schr\"odinger bridges and Langevin dynamics. Schr\"odinger bridges over an appropriate reversible reference process are used to approximate the conditional transition probability from the available training samples, which is then implemented in a discrete-time reversible Langevin sampler to generate new samples. By setting the kernel bandwidth in the reference process to match the time step size used in the unadjusted Langevin algorithm, our method effectively circumvents any stability issues typically associated with the time-stepping of stiff stochastic differential equations. Moreover, we introduce a novel split-step scheme, ensuring that the generated samples remain within the convex hull of the training samples. Our framework can be naturally extended to generate conditional samples and to Bayesian inference problems. We demonstrate the performance of our proposed scheme through experiments on synthetic datasets with increasing dimensions and on a stochastic subgrid-scale parametrization conditional sampling problem as well as generating sample trajectories of a dynamical system using conditional sampling.
Related papers
- Localized Schrödinger Bridge Sampler [0.276240219662896]
We build on previous work combining Schr"odinger bridges and plug & play Langevin samplers.
A key bottleneck of these approaches is the exponential dependence of the required training samples.
We propose a localization strategy which exploits conditional independence of conditional expectation values.
arXiv Detail & Related papers (2024-09-12T12:02:51Z) - Score-based Generative Models with Adaptive Momentum [40.84399531998246]
We propose an adaptive momentum sampling method to accelerate the transforming process.
We show that our method can produce more faithful images/graphs in small sampling steps with 2 to 5 times speed up.
arXiv Detail & Related papers (2024-05-22T15:20:27Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
Diffusion-based generative models use differential equations to establish a smooth connection between a complex data distribution and a tractable prior distribution.
In this paper, we identify several intriguing trajectory properties in the ODE-based sampling process of diffusion models.
arXiv Detail & Related papers (2024-05-18T15:59:41Z) - DiffuSeq-v2: Bridging Discrete and Continuous Text Spaces for
Accelerated Seq2Seq Diffusion Models [58.450152413700586]
We introduce a soft absorbing state that facilitates the diffusion model in learning to reconstruct discrete mutations based on the underlying Gaussian space.
We employ state-of-the-art ODE solvers within the continuous space to expedite the sampling process.
Our proposed method effectively accelerates the training convergence by 4x and generates samples of similar quality 800x faster.
arXiv Detail & Related papers (2023-10-09T15:29:10Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
We inspect the ODE-based sampling of a popular variance-exploding SDE.
We establish a theoretical relationship between the optimal ODE-based sampling and the classic mean-shift (mode-seeking) algorithm.
arXiv Detail & Related papers (2023-05-31T15:33:16Z) - Generative modeling for time series via Schr{\"o}dinger bridge [0.0]
We propose a novel generative model for time series based on Schr"dinger bridge (SB) approach.
This consists in the entropic via optimal transport between a reference probability measure on path space and a target measure consistent with the joint data distribution of the time series.
arXiv Detail & Related papers (2023-04-11T09:45:06Z) - Restoration-Degradation Beyond Linear Diffusions: A Non-Asymptotic
Analysis For DDIM-Type Samplers [90.45898746733397]
We develop a framework for non-asymptotic analysis of deterministic samplers used for diffusion generative modeling.
We show that one step along the probability flow ODE can be expressed as two steps: 1) a restoration step that runs ascent on the conditional log-likelihood at some infinitesimally previous time, and 2) a degradation step that runs the forward process using noise pointing back towards the current gradient.
arXiv Detail & Related papers (2023-03-06T18:59:19Z) - Example-Based Sampling with Diffusion Models [7.943023838493658]
diffusion models for image generation could be appropriate for learning how to generate point sets from examples.
We propose a generic way to produce 2-d point sets imitating existing samplers from observed point sets using a diffusion model.
We demonstrate how the differentiability of our approach can be used to optimize point sets to enforce properties.
arXiv Detail & Related papers (2023-02-10T08:35:17Z) - Conditioning Normalizing Flows for Rare Event Sampling [61.005334495264194]
We propose a transition path sampling scheme based on neural-network generated configurations.
We show that this approach enables the resolution of both the thermodynamics and kinetics of the transition region.
arXiv Detail & Related papers (2022-07-29T07:56:10Z) - Selectively increasing the diversity of GAN-generated samples [8.980453507536017]
We propose a novel method to selectively increase the diversity of GAN-generated samples.
We show the superiority of our method in a synthetic benchmark as well as a real-life scenario simulating data from the Zero Degree Calorimeter of ALICE experiment in CERN.
arXiv Detail & Related papers (2022-07-04T16:27:06Z) - Efficiently Sampling Functions from Gaussian Process Posteriors [76.94808614373609]
We propose an easy-to-use and general-purpose approach for fast posterior sampling.
We demonstrate how decoupled sample paths accurately represent Gaussian process posteriors at a fraction of the usual cost.
arXiv Detail & Related papers (2020-02-21T14:03:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.