ChatDiet: Empowering Personalized Nutrition-Oriented Food Recommender Chatbots through an LLM-Augmented Framework
- URL: http://arxiv.org/abs/2403.00781v3
- Date: Wed, 25 Sep 2024 06:31:09 GMT
- Title: ChatDiet: Empowering Personalized Nutrition-Oriented Food Recommender Chatbots through an LLM-Augmented Framework
- Authors: Zhongqi Yang, Elahe Khatibi, Nitish Nagesh, Mahyar Abbasian, Iman Azimi, Ramesh Jain, Amir M. Rahmani,
- Abstract summary: ChatDiet is a novel framework designed specifically for personalized nutrition-oriented food recommendation chatbots.
ChatDiet integrates personal and population models, complemented by an orchestrator, to seamlessly retrieve and process pertinent information.
Our evaluation of ChatDiet includes a compelling case study, where we establish a causal personal model to estimate individual nutrition effects.
- Score: 2.3221599497640915
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The profound impact of food on health necessitates advanced nutrition-oriented food recommendation services. Conventional methods often lack the crucial elements of personalization, explainability, and interactivity. While Large Language Models (LLMs) bring interpretability and explainability, their standalone use falls short of achieving true personalization. In this paper, we introduce ChatDiet, a novel LLM-powered framework designed specifically for personalized nutrition-oriented food recommendation chatbots. ChatDiet integrates personal and population models, complemented by an orchestrator, to seamlessly retrieve and process pertinent information. The personal model leverages causal discovery and inference techniques to assess personalized nutritional effects for a specific user, whereas the population model provides generalized information on food nutritional content. The orchestrator retrieves, synergizes and delivers the output of both models to the LLM, providing tailored food recommendations designed to support targeted health outcomes. The result is a dynamic delivery of personalized and explainable food recommendations, tailored to individual user preferences. Our evaluation of ChatDiet includes a compelling case study, where we establish a causal personal model to estimate individual nutrition effects. Our assessments, including a food recommendation test showcasing a 92\% effectiveness rate, coupled with illustrative dialogue examples, underscore ChatDiet's strengths in explainability, personalization, and interactivity.
Related papers
- NutritionVerse-Direct: Exploring Deep Neural Networks for Multitask Nutrition Prediction from Food Images [63.314702537010355]
Self-reporting methods are often inaccurate and suffer from substantial bias.
Recent work has explored using computer vision prediction systems to predict nutritional information from food images.
This paper aims to enhance the efficacy of dietary intake estimation by leveraging various neural network architectures.
arXiv Detail & Related papers (2024-05-13T14:56:55Z) - FoodLMM: A Versatile Food Assistant using Large Multi-modal Model [96.76271649854542]
Large Multi-modal Models (LMMs) have made impressive progress in many vision-language tasks.
This paper proposes FoodLMM, a versatile food assistant based on LMMs with various capabilities.
We introduce a series of novel task-specific tokens and heads, enabling the model to predict food nutritional values and multiple segmentation masks.
arXiv Detail & Related papers (2023-12-22T11:56:22Z) - NutritionVerse-Real: An Open Access Manually Collected 2D Food Scene
Dataset for Dietary Intake Estimation [68.49526750115429]
We introduce NutritionVerse-Real, an open access manually collected 2D food scene dataset for dietary intake estimation.
The NutritionVerse-Real dataset was created by manually collecting images of food scenes in real life, measuring the weight of every ingredient and computing the associated dietary content of each dish.
arXiv Detail & Related papers (2023-11-20T11:05:20Z) - NutritionVerse: Empirical Study of Various Dietary Intake Estimation Approaches [59.38343165508926]
Accurate dietary intake estimation is critical for informing policies and programs to support healthy eating.
Recent work has focused on using computer vision and machine learning to automatically estimate dietary intake from food images.
We introduce NutritionVerse- Synth, the first large-scale dataset of 84,984 synthetic 2D food images with associated dietary information.
We also collect a real image dataset, NutritionVerse-Real, containing 889 images of 251 dishes to evaluate realism.
arXiv Detail & Related papers (2023-09-14T13:29:41Z) - Human Behavior-based Personalized Meal Recommendation and Menu Planning
Social System [9.633565294243175]
The proposed framework includes a social-affective computing module to recognize the affects of different meals.
EEG allows to capture the brain signals and analyze them to anticipate affective toward a food.
The experimental findings reveal that the suggested affective computing, meal recommendation, and menu planning algorithms perform well across a variety of assessment parameters.
arXiv Detail & Related papers (2023-08-12T12:19:23Z) - UMDFood: Vision-language models boost food composition compilation [26.5694236976957]
We propose a novel vision-language model, UMDFood-VL, using front-of-package labeling and product images to accurately estimate food composition profiles.
Up to 82.2% of selected products' estimated error between chemical analysis results and model estimation results are less than 10%.
This performance sheds light on generalization towards other food and nutrition-related data compilation and catalyzation.
arXiv Detail & Related papers (2023-05-18T03:18:12Z) - NutritionVerse-3D: A 3D Food Model Dataset for Nutritional Intake
Estimation [65.47310907481042]
One in four older adults are malnourished.
Machine learning and computer vision show promise of automated nutrition tracking methods of food.
NutritionVerse-3D is a large-scale high-resolution dataset of 105 3D food models.
arXiv Detail & Related papers (2023-04-12T05:27:30Z) - MenuAI: Restaurant Food Recommendation System via a Transformer-based
Deep Learning Model [15.248362664235845]
A novel restaurant food recommendation system is proposed in this paper.
It uses Optical Character Recognition (OCR) technology and a transformer-based deep learning model, Learning to Rank (LTR) model.
Our system is able to rank the food dishes in terms of the input search key (e.g., calorie, protein level)
arXiv Detail & Related papers (2022-10-15T11:45:44Z) - Towards the Creation of a Nutrition and Food Group Based Image Database [58.429385707376554]
We propose a framework to create a nutrition and food group based image database.
We design a protocol for linking food group based food codes in the U.S. Department of Agriculture's (USDA) Food and Nutrient Database for Dietary Studies (FNDDS)
Our proposed method is used to build a nutrition and food group based image database including 16,114 food datasets.
arXiv Detail & Related papers (2022-06-05T02:41:44Z) - Personalized Food Recommendation as Constrained Question Answering over
a Large-scale Food Knowledge Graph [16.58534326000209]
We propose a novel problem formulation for food recommendation, modeling this task as constrained question answering over a large-scale food knowledge base/graph (KBQA)
Besides the requirements from the user query, personalized requirements from the user's dietary preferences and health guidelines are handled in a unified way.
Our approach significantly outperforms non-personalized counterparts.
arXiv Detail & Related papers (2021-01-05T20:38:16Z) - Personal Food Model [4.093166743990079]
We adopt a person-centric multimedia and multimodal perspective on food computing.
Personal Food Model is the digitized representation of the food-related characteristics of an individual.
We use event mining approaches to relate food with other life and biological events to build a predictive model.
arXiv Detail & Related papers (2020-08-28T21:36:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.