Fast-COS: A Fast One-Stage Object Detector Based on Reparameterized Attention Vision Transformer for Autonomous Driving
- URL: http://arxiv.org/abs/2502.07417v1
- Date: Tue, 11 Feb 2025 09:54:09 GMT
- Title: Fast-COS: A Fast One-Stage Object Detector Based on Reparameterized Attention Vision Transformer for Autonomous Driving
- Authors: Novendra Setyawan, Ghufron Wahyu Kurniawan, Chi-Chia Sun, Wen-Kai Kuo, Jun-Wei Hsieh,
- Abstract summary: This paper introduces Fast-COS, a novel single-stage object detection framework crafted specifically for driving scenes.
RAViT achieves 81.4% Top-1 accuracy on the ImageNet-1K dataset.
It surpasses leading models in efficiency, delivering up to 75.9% faster GPU inference and 1.38 higher throughput on edge devices.
- Score: 3.617580194719686
- License:
- Abstract: The perception system is a a critical role of an autonomous driving system for ensuring safety. The driving scene perception system fundamentally represents an object detection task that requires achieving a balance between accuracy and processing speed. Many contemporary methods focus on improving detection accuracy but often overlook the importance of real-time detection capabilities when computational resources are limited. Thus, it is vital to investigate efficient object detection strategies for driving scenes. This paper introduces Fast-COS, a novel single-stage object detection framework crafted specifically for driving scene applications. The research initiates with an analysis of the backbone, considering both macro and micro architectural designs, yielding the Reparameterized Attention Vision Transformer (RAViT). RAViT utilizes Reparameterized Multi-Scale Depth-Wise Convolution (RepMSDW) and Reparameterized Self-Attention (RepSA) to enhance computational efficiency and feature extraction. In extensive tests across GPU, edge, and mobile platforms, RAViT achieves 81.4% Top-1 accuracy on the ImageNet-1K dataset, demonstrating significant throughput improvements over comparable backbone models such as ResNet, FastViT, RepViT, and EfficientFormer. Additionally, integrating RepMSDW into a feature pyramid network forms RepFPN, enabling fast and multi-scale feature fusion. Fast-COS enhances object detection in driving scenes, attaining an AP50 score of 57.2% on the BDD100K dataset and 80.0% on the TJU-DHD Traffic dataset. It surpasses leading models in efficiency, delivering up to 75.9% faster GPU inference and 1.38 higher throughput on edge devices compared to FCOS, YOLOF, and RetinaNet. These findings establish Fast-COS as a highly scalable and reliable solution suitable for real-time applications, especially in resource-limited environments like autonomous driving systems
Related papers
- CorrDiff: Adaptive Delay-aware Detector with Temporal Cue Inputs for Real-time Object Detection [11.714072240331518]
CorrDiff is designed to tackle the challenge of delays in real-time detection systems.
It is able to utilize runtime-estimated temporal cues to predict objects' locations for multiple future frames.
It meets the stringent real-time processing requirements on all kinds of devices.
arXiv Detail & Related papers (2025-01-09T10:34:25Z) - YOLO-Vehicle-Pro: A Cloud-Edge Collaborative Framework for Object Detection in Autonomous Driving under Adverse Weather Conditions [8.820126303110545]
This paper proposes two innovative deep learning models: YOLO-Vehicle and YOLO-Vehicle-Pro.
YOLO-Vehicle is an object detection model tailored specifically for autonomous driving scenarios.
YOLO-Vehicle-Pro builds upon this foundation by introducing an improved image dehazing algorithm.
arXiv Detail & Related papers (2024-10-23T10:07:13Z) - P-YOLOv8: Efficient and Accurate Real-Time Detection of Distracted Driving [0.0]
Distracted driving is a critical safety issue that leads to numerous fatalities and injuries worldwide.
This study addresses the need for efficient and real-time machine learning models to detect distracted driving behaviors.
A real-time object detection system is introduced, optimized for both speed and accuracy.
arXiv Detail & Related papers (2024-10-21T02:56:44Z) - Real-Time Pedestrian Detection on IoT Edge Devices: A Lightweight Deep Learning Approach [1.4732811715354455]
This research explores implementing a lightweight deep learning model on Artificial Intelligence of Things (AIoT) edge devices.
An optimized You Only Look Once (YOLO) based DL model is deployed for real-time pedestrian detection.
The simulation results demonstrate that the optimized YOLO model can achieve real-time pedestrian detection, with a fast inference speed of 147 milliseconds, a frame rate of 2.3 frames per second, and an accuracy of 78%.
arXiv Detail & Related papers (2024-09-24T04:48:41Z) - Exploring Dynamic Transformer for Efficient Object Tracking [58.120191254379854]
We propose DyTrack, a dynamic transformer framework for efficient tracking.
DyTrack automatically learns to configure proper reasoning routes for various inputs, gaining better utilization of the available computational budget.
Experiments on multiple benchmarks demonstrate that DyTrack achieves promising speed-precision trade-offs with only a single model.
arXiv Detail & Related papers (2024-03-26T12:31:58Z) - Recurrent Vision Transformers for Object Detection with Event Cameras [62.27246562304705]
We present Recurrent Vision Transformers (RVTs), a novel backbone for object detection with event cameras.
RVTs can be trained from scratch to reach state-of-the-art performance on event-based object detection.
Our study brings new insights into effective design choices that can be fruitful for research beyond event-based vision.
arXiv Detail & Related papers (2022-12-11T20:28:59Z) - StreamYOLO: Real-time Object Detection for Streaming Perception [84.2559631820007]
We endow the models with the capacity of predicting the future, significantly improving the results for streaming perception.
We consider multiple velocities driving scene and propose Velocity-awared streaming AP (VsAP) to jointly evaluate the accuracy.
Our simple method achieves the state-of-the-art performance on Argoverse-HD dataset and improves the sAP and VsAP by 4.7% and 8.2% respectively.
arXiv Detail & Related papers (2022-07-21T12:03:02Z) - Scalable Vehicle Re-Identification via Self-Supervision [66.2562538902156]
Vehicle Re-Identification is one of the key elements in city-scale vehicle analytics systems.
Many state-of-the-art solutions for vehicle re-id mostly focus on improving the accuracy on existing re-id benchmarks and often ignore computational complexity.
We propose a simple yet effective hybrid solution empowered by self-supervised training which only uses a single network during inference time.
arXiv Detail & Related papers (2022-05-16T12:14:42Z) - Oriented R-CNN for Object Detection [61.78746189807462]
This work proposes an effective and simple oriented object detection framework, termed Oriented R-CNN.
In the first stage, we propose an oriented Region Proposal Network (oriented RPN) that directly generates high-quality oriented proposals in a nearly cost-free manner.
The second stage is oriented R-CNN head for refining oriented Regions of Interest (oriented RoIs) and recognizing them.
arXiv Detail & Related papers (2021-08-12T12:47:43Z) - 2nd Place Solution for Waymo Open Dataset Challenge - Real-time 2D
Object Detection [26.086623067939605]
In this report, we introduce a real-time method to detect the 2D objects from images.
We leverage accelerationRT to optimize the inference time of our detection pipeline.
Our framework achieves the latency of 45.8ms/frame on an Nvidia Tesla V100 GPU.
arXiv Detail & Related papers (2021-06-16T11:32:03Z) - Anchor-free Small-scale Multispectral Pedestrian Detection [88.7497134369344]
We propose a method for effective and efficient multispectral fusion of the two modalities in an adapted single-stage anchor-free base architecture.
We aim at learning pedestrian representations based on object center and scale rather than direct bounding box predictions.
Results show our method's effectiveness in detecting small-scaled pedestrians.
arXiv Detail & Related papers (2020-08-19T13:13:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.