論文の概要: CapyMOA: Efficient Machine Learning for Data Streams in Python
- arxiv url: http://arxiv.org/abs/2502.07432v1
- Date: Tue, 11 Feb 2025 10:20:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-12 14:06:57.745971
- Title: CapyMOA: Efficient Machine Learning for Data Streams in Python
- Title(参考訳): CapyMOA: Pythonのデータストリームのための効率的な機械学習
- Authors: Heitor Murilo Gomes, Anton Lee, Nuwan Gunasekara, Yibin Sun, Guilherme Weigert Cassales, Justin Liu, Marco Heyden, Vitor Cerqueira, Maroua Bahri, Yun Sing Koh, Bernhard Pfahringer, Albert Bifet,
- Abstract要約: CapyMOAは、ストリーミングデータ上の効率的な機械学習のためのオープンソースのライブラリである。
CapyMOAには、MOAやPyTorchといった外部フレームワークとの統合を可能にするアーキテクチャが含まれている。
- 参考スコア(独自算出の注目度): 11.597798770955425
- License:
- Abstract: CapyMOA is an open-source library designed for efficient machine learning on streaming data. It provides a structured framework for real-time learning and evaluation, featuring a flexible data representation. CapyMOA includes an extensible architecture that allows integration with external frameworks such as MOA and PyTorch, facilitating hybrid learning approaches that combine traditional online algorithms with deep learning techniques. By emphasizing adaptability, scalability, and usability, CapyMOA allows researchers and practitioners to tackle dynamic learning challenges across various domains.
- Abstract(参考訳): CapyMOAは、ストリーミングデータ上の効率的な機械学習のために設計されたオープンソースのライブラリである。
リアルタイム学習と評価のための構造化フレームワークを提供し、柔軟なデータ表現を備えている。
CapyMOAには拡張可能なアーキテクチャが含まれており、MOAやPyTorchといった外部フレームワークとの統合が可能である。
CapyMOAは適応性、スケーラビリティ、ユーザビリティを強調することで、研究者や実践者がさまざまな領域にわたる動的学習の課題に取り組むことを可能にする。
関連論文リスト
- Learn while Unlearn: An Iterative Unlearning Framework for Generative Language Models [49.043599241803825]
Iterative Contrastive Unlearning (ICU)フレームワークは3つのコアコンポーネントで構成されている。
知識未学習誘導モジュールは、未学習の損失を通じて特定の知識を除去する。
Contrastive Learning Enhancementモジュールは、純粋な未学習の目標に対してモデルの表現力を維持する。
また、特定のデータ片の未学習範囲を動的に評価し、反復的な更新を行う反復未学習リファインメントモジュールも用意されている。
論文 参考訳(メタデータ) (2024-07-25T07:09:35Z) - RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
我々は,対話型模倣学習と類似するが,さらに実践的な仮定の下で,非政治強化学習によってパフォーマンスが向上できることを実証する。
提案手法は,ユーザ介入信号を用いた強化学習を報奨として利用する。
このことは、インタラクティブな模倣学習において介入する専門家がほぼ最適であるべきだという仮定を緩和し、アルゴリズムが潜在的に最適でない人間の専門家よりも改善される行動を学ぶことを可能にする。
論文 参考訳(メタデータ) (2023-11-21T21:05:21Z) - Empowering Learning: Standalone, Browser-Only Courses for Seamless
Education [0.0]
概念実証型オープンソースMOOC配信システムであるPyGlideを紹介する。
PyGlideのユーザフレンドリーなステップバイステップガイドを提供する。
PyGlideの実用的なアプリケーションをGitHubの継続的インテグレーションパイプラインで紹介します。
論文 参考訳(メタデータ) (2023-11-12T20:59:52Z) - Reinforcement Learning Based Multi-modal Feature Fusion Network for
Novel Class Discovery [47.28191501836041]
本稿では,人間の認知過程をシミュレートするために強化学習フレームワークを用いる。
また,マルチモーダル情報から特徴を抽出・融合するマルチエージェントフレームワークをデプロイした。
我々は、OS-MN40、OS-MN40-Miss、Cifar10データセットを用いて、3Dドメインと2Dドメインの両方でのアプローチの性能を示す。
論文 参考訳(メタデータ) (2023-08-26T07:55:32Z) - Benchmarking Offline Reinforcement Learning on Real-Robot Hardware [35.29390454207064]
特にデクサラスな操作は、その一般的な形式において未解決の問題である。
本稿では,2つのタスク上の厳密な操作プラットフォームからオフライン学習のための大量のデータを含むベンチマークを提案する。
実システム上でのオフライン強化学習のための再現可能な実験的なセットアップを提供する。
論文 参考訳(メタデータ) (2023-07-28T17:29:49Z) - Pre-training Contextualized World Models with In-the-wild Videos for
Reinforcement Learning [54.67880602409801]
本稿では,視覚制御タスクの学習を効率的に行うために,Wild 動画を多用した事前学習型世界モデルの課題について検討する。
本稿では、コンテキストと動的モデリングを明確に分離したContextualized World Models(ContextWM)を紹介する。
実験により,ContextWMを内蔵したWildビデオ事前学習は,モデルベース強化学習のサンプル効率を大幅に向上できることが示された。
論文 参考訳(メタデータ) (2023-05-29T14:29:12Z) - Concept Discovery for Fast Adapatation [42.81705659613234]
データ特徴間の構造をメタラーニングすることで、より効果的な適応を実現する。
提案手法は,概念ベースモデル非依存メタラーニング(COMAML)を用いて,合成されたデータセットと実世界のデータセットの両方に対して,構造化データの一貫した改善を実現する。
論文 参考訳(メタデータ) (2023-01-19T02:33:58Z) - DMCNet: Diversified Model Combination Network for Understanding
Engagement from Video Screengrabs [0.4397520291340695]
エンゲージメントは知的教育インタフェースの開発において重要な役割を果たしている。
非深さ学習モデルは、Histogram of Oriented Gradient(HOG)、SVM(Support Vector Machine)、SIFT(Scale Invariant Feature Transform)、SURF(Speeded Up Robust Features)といった一般的なアルゴリズムの組み合わせに基づいている。
ディープラーニングには、Densely Connected Convolutional Networks (DenseNet-121)、Residual Network (ResNet-18)、MobileNetV1がある。
論文 参考訳(メタデータ) (2022-04-13T15:24:38Z) - Online Structured Meta-learning [137.48138166279313]
現在のオンラインメタ学習アルゴリズムは、グローバルに共有されたメタラーナーを学ぶために限られている。
この制限を克服するオンライン構造化メタラーニング(OSML)フレームワークを提案する。
3つのデータセットの実験は、提案フレームワークの有効性と解釈可能性を示している。
論文 参考訳(メタデータ) (2020-10-22T09:10:31Z) - A Privacy-Preserving Distributed Architecture for
Deep-Learning-as-a-Service [68.84245063902908]
本稿では,ディープラーニング・アズ・ア・サービスのための分散アーキテクチャを提案する。
クラウドベースのマシンとディープラーニングサービスを提供しながら、ユーザの機密データを保存できる。
論文 参考訳(メタデータ) (2020-03-30T15:12:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。