論文の概要: LLM-Sketch: Enhancing Network Sketches with LLM
- arxiv url: http://arxiv.org/abs/2502.07495v1
- Date: Tue, 11 Feb 2025 11:54:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-12 14:06:02.112023
- Title: LLM-Sketch: Enhancing Network Sketches with LLM
- Title(参考訳): LLM-Sketch: LLMによるネットワークスケッチの強化
- Authors: Yuanpeng Li, Zhen Xu, Zongwei Lv, Yannan Hu, Yong Cui, Tong Yang,
- Abstract要約: Sketchesは、バウンド精度でメモリオーバーヘッドを低くする、コンパクトなデータ構造である。
近年の研究では、機械学習を用いたスケッチの最適化が試みられている。
LLM-Sketchは,パケットヘッダ内のフローID以外のフィールドも,フローサイズを推測するのに役立つという知見に基づいて提案する。
- 参考スコア(独自算出の注目度): 10.886932940560477
- License:
- Abstract: Network stream mining is fundamental to many network operations. Sketches, as compact data structures that offer low memory overhead with bounded accuracy, have emerged as a promising solution for network stream mining. Recent studies attempt to optimize sketches using machine learning; however, these approaches face the challenges of lacking adaptivity to dynamic networks and incurring high training costs. In this paper, we propose LLM-Sketch, based on the insight that fields beyond the flow IDs in packet headers can also help infer flow sizes. By using a two-tier data structure and separately recording large and small flows, LLM-Sketch improves accuracy while minimizing memory usage. Furthermore, it leverages fine-tuned large language models (LLMs) to reliably estimate flow sizes. We evaluate LLM-Sketch on three representative tasks, and the results demonstrate that LLM-Sketch outperforms state-of-the-art methods by achieving a $7.5\times$ accuracy improvement.
- Abstract(参考訳): ネットワークストリームマイニングは多くのネットワーク操作に基本である。
Sketchesは、メモリオーバーヘッドの少ない、バウンダリの精度でコンパクトなデータ構造として、ネットワークストリームマイニングのための有望なソリューションとして登場した。
近年の研究では、機械学習を用いたスケッチの最適化が試みられているが、これらのアプローチは動的ネットワークへの適応性が欠如し、高いトレーニングコストが発生するという課題に直面している。
本稿では,LLM-Sketchを提案する。パケットヘッダ内のフローID以外のフィールドも,フローサイズを推測する上で有効である,という知見に基づいて,LLM-Sketchを提案する。
LLM-Sketchは2層データ構造を使用し、大小のフローを別々に記録することにより、メモリ使用量を最小限に抑えながら精度を向上させる。
さらに、細調整された大言語モデル(LLM)を利用して、フローサイズを確実に推定する。
LLM-Sketchを3つの代表課題に対して評価した結果, LLM-Sketchは7.5ドル以上の精度向上を達成し, 最先端の手法よりも優れた性能を示した。
関連論文リスト
- SWIFT: On-the-Fly Self-Speculative Decoding for LLM Inference Acceleration [10.970637831760136]
投機的復号法(SD)は,大規模言語モデル(LLM)の推論を高速化するパラダイムとして広く用いられている。
本稿では,LLMの中間層を適応的に選択して推論時にスキップする,オンザフライの自己投機的復号アルゴリズムであるSWIFTを紹介する。
SWIFTは生成したテキストの元の分布を保ちながら1.3x-1.6xの高速化を実現可能であることを示す。
論文 参考訳(メタデータ) (2024-10-09T14:15:30Z) - Search for Efficient Large Language Models [52.98684997131108]
大規模言語モデル(LLMs)は、人工知能研究の領域で長い間停滞してきた。
軽量プルーニング、量子化、蒸留がLLMの圧縮に取り入れられ、メモリの削減と推論の加速を狙った。
ほとんどのモデル圧縮技術は、最適アーキテクチャの探索を見越して重量最適化に重点を置いている。
論文 参考訳(メタデータ) (2024-09-25T21:32:12Z) - CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
本稿では,MLLM命令のチューニングを理論的・経験的両面から解析する。
そこで本研究では,学習バランスを定量的に評価する尺度を提案する。
さらに,MLLMの生成分布の更新を促進する補助的損失正規化手法を提案する。
論文 参考訳(メタデータ) (2024-07-29T23:18:55Z) - Bypass Back-propagation: Optimization-based Structural Pruning for Large Language Models via Policy Gradient [57.9629676017527]
大規模言語モデルを用いた最適化に基づく構造解析手法を提案する。
我々は,プルーニングモデルの損失を最適化することにより,確率空間におけるプルーニングマスクを直接学習する。
A100 GPUで13Bモデルに対して約35GBのメモリで2.7時間動作させる。
論文 参考訳(メタデータ) (2024-06-15T09:31:03Z) - LLM2LLM: Boosting LLMs with Novel Iterative Data Enhancement [79.31084387589968]
事前訓練された大規模言語モデル(LLM)は、現在、自然言語処理タスクの大部分を解決するための最先端技術である。
LLM2LLMは、教師のLLMを使って小さなシードデータセットを強化するデータ拡張戦略である。
GSM8Kデータセットでは最大24.2%、CaseHOLDでは32.6%、SNIPSでは32.0%、TRECでは52.6%、SST-2では39.8%の改善が達成された。
論文 参考訳(メタデータ) (2024-03-22T08:57:07Z) - Online Cascade Learning for Efficient Inference over Streams [9.516197133796437]
大規模言語モデル(LLM)は、データストリームに関する複雑なクエリに応答する自然な役割を持つ。
この課題に対処する最初のアプローチであるオンラインカスケード学習を提案する。
我々は,オンラインでカスケードを学習するタスクを模倣学習問題として定式化する。
論文 参考訳(メタデータ) (2024-02-07T01:46:50Z) - NetLLM: Adapting Large Language Models for Networking [36.61572542761661]
我々は,ネットワーク問題を解決するために低努力でLLMの強力な能力を活用するためのコヒーレントな設計を提供する最初のフレームワークであるNetLLMを紹介する。
具体的には、NetLLMはLLMにネットワーク上のマルチモーダルデータを効果的に処理し、タスク固有の回答を効率的に生成する権限を与える。
論文 参考訳(メタデータ) (2024-02-04T04:21:34Z) - Dynamic Sparse No Training: Training-Free Fine-tuning for Sparse LLMs [67.38165028487242]
そこで我々は,DSnoT(Dynamic Sparse No Training, 動的スパース・ノー・トレーニング)を導入した。
動的スパーストレーニングにインスパイアされたDSnoTは、密度とスパースLLM間の再構成誤差を最小限に抑える。
本稿は, LLMのスパースを, 効率的なトレーニング自由な方法で微調整し, 新たな会場をオープンして, LLMの空間性に大きな可能性を拡大する方法について, 新たな知見を提供する。
論文 参考訳(メタデータ) (2023-10-13T07:38:52Z) - Response Length Perception and Sequence Scheduling: An LLM-Empowered LLM
Inference Pipeline [22.08897444328099]
大規模言語モデル(LLM)はAIの分野に革命をもたらし、様々なタスクで前例のない能力を示している。
本稿では,LLMのパワーを利用する効率的なLLM推論パイプラインを提案する。
論文 参考訳(メタデータ) (2023-05-22T15:36:06Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
大規模言語モデル(LLM)は、言語理解と生成において顕著な能力を示している。
タスク非依存であり、元のトレーニングデータセットへの依存を最小限に抑えるという2つの制約の範囲内でLLMの圧縮に取り組む。
LLM-Prunerという名前のこの手法は、非臨界結合構造を選択的に除去する構造プルーニングを採用する。
論文 参考訳(メタデータ) (2023-05-19T12:10:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。