論文の概要: Efficient Continuous Group Convolutions for Local SE(3) Equivariance in 3D Point Clouds
- arxiv url: http://arxiv.org/abs/2502.07505v1
- Date: Tue, 11 Feb 2025 12:15:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-12 14:07:34.991771
- Title: Efficient Continuous Group Convolutions for Local SE(3) Equivariance in 3D Point Clouds
- Title(参考訳): 3次元点雲における局所SE(3)等分散に対する効率的な連続群畳み込み
- Authors: Lisa Weijler, Pedro Hermosilla,
- Abstract要約: ポイントクラウド処理のための効率的で連続的で局所的なSE(3)同変畳み込み層を提案する。
提案手法は,オブジェクト分類やセマンティックセグメンテーションなど,さまざまなデータセットやタスクの競合や優れたパフォーマンスを実現する。
- 参考スコア(独自算出の注目度): 5.659343611352998
- License:
- Abstract: Extending the translation equivariance property of convolutional neural networks to larger symmetry groups has been shown to reduce sample complexity and enable more discriminative feature learning. Further, exploiting additional symmetries facilitates greater weight sharing than standard convolutions, leading to an enhanced network expressivity without an increase in parameter count. However, extending the equivariant properties of a convolution layer comes at a computational cost. In particular, for 3D data, expanding equivariance to the SE(3) group (rotation and translation) results in a 6D convolution operation, which is not tractable for larger data samples such as 3D scene scans. While efforts have been made to develop efficient SE(3) equivariant networks, existing approaches rely on discretization or only introduce global rotation equivariance. This limits their applicability to point clouds representing a scene composed of multiple objects. This work presents an efficient, continuous, and local SE(3) equivariant convolution layer for point cloud processing based on general group convolution and local reference frames. Our experiments show that our approach achieves competitive or superior performance across a range of datasets and tasks, including object classification and semantic segmentation, with negligible computational overhead.
- Abstract(参考訳): 畳み込みニューラルネットワークの翻訳等価性をより大きな対称性群に拡張することで、サンプルの複雑さを減らし、より差別的な特徴学習を可能にすることが示されている。
さらに、追加の対称性を活用することで、標準畳み込みよりも重量共有が促進され、パラメータ数の増加なしにネットワーク表現性が向上する。
しかし、畳み込み層の同変性を拡張するには計算コストがかかる。
特に、3Dデータの場合、SE(3)群(回転と変換)に等しく拡大すると、6D畳み込み動作が起こり、これは3Dシーンスキャンのような大きなデータサンプルには適用できない。
効率的なSE(3)同変ネットワークの開発が試みられているが、既存のアプローチは離散化に頼るか、大域的回転同変を導入するのみである。
これにより、複数のオブジェクトからなるシーンを表すポイントクラウドへの適用性が制限される。
この研究は、一般群畳み込みと局所参照フレームに基づく点クラウド処理のための効率的で連続的で局所的なSE(3)同変畳み込み層を示す。
提案手法は,オブジェクト分類やセマンティックセグメンテーションなど,さまざまなデータセットやタスクに対して,計算オーバーヘッドが無視できるような競合的あるいは優れた性能を実現する。
関連論文リスト
- ShapeSplat: A Large-scale Dataset of Gaussian Splats and Their Self-Supervised Pretraining [104.34751911174196]
ShapeNetとModelNetを用いた大規模3DGSデータセットを構築した。
データセットのShapeSplatは、87のユニークなカテゴリから65Kのオブジェクトで構成されています。
textbftextitGaussian-MAEを導入し、ガウスパラメータからの表現学習の独特な利点を強調した。
論文 参考訳(メタデータ) (2024-08-20T14:49:14Z) - Leveraging SO(3)-steerable convolutions for pose-robust semantic segmentation in 3D medical data [2.207533492015563]
球面調和に基づく同変ボクセル畳み込みを用いたセグメンテーションネットワークを新たに提案する。
これらのネットワークは、トレーニング中に見えないデータポーズに対して堅牢であり、トレーニング中にローテーションベースのデータ拡張を必要としない。
MRI脳腫瘍におけるセグメンテーション性能と健常な脳構造セグメンテーション課題について検討した。
論文 参考訳(メタデータ) (2023-03-01T09:27:08Z) - Moving Frame Net: SE(3)-Equivariant Network for Volumes [0.0]
移動フレームアプローチに基づく画像データのための回転・変換同変ニューラルネットワークを提案する。
入力段階において、移動フレームの計算を1つに減らし、そのアプローチを大幅に改善する。
我々の訓練されたモデルは、MedMNIST3Dの試験されたデータセットの大部分の医療ボリューム分類において、ベンチマークを上回ります。
論文 参考訳(メタデータ) (2022-11-07T10:25:38Z) - PDO-s3DCNNs: Partial Differential Operator Based Steerable 3D CNNs [69.85869748832127]
本研究では、3Dフィルタをモデル化するために偏微分演算子(PDO)を用い、PDO-s3DCNNと呼ばれる一般的な3D CNNを導出する。
等変フィルタは線形制約の対象であり, 様々な条件下で効率的に解けることを示す。
論文 参考訳(メタデータ) (2022-08-07T13:37:29Z) - CloudAttention: Efficient Multi-Scale Attention Scheme For 3D Point
Cloud Learning [81.85951026033787]
この作業にトランスフォーマーをセットし、それらを形状分類と部分およびシーンセグメンテーションのための階層的なフレームワークに組み込む。
また、各イテレーションにおけるサンプリングとグループ化を活用して、効率的でダイナミックなグローバルなクロスアテンションを計算します。
提案した階層モデルは,最先端の形状分類を平均精度で達成し,従来のセグメンテーション法と同等の結果を得る。
論文 参考訳(メタデータ) (2022-07-31T21:39:15Z) - E2PN: Efficient SE(3)-Equivariant Point Network [12.520265159777255]
本稿では,3次元点雲からSE(3)-等価特徴を学習するための畳み込み構造を提案する。
カーネルポイント畳み込み(カーネルポイントコンボリューション、カーネルポイントコンボリューション、カーネルポイントコンボリューション、カーネルポイントコンボリューション、カーネルポイントコンボリューション、カーネルポイントコンボリューション、カーネルポイントコンボリューション、カーネルポイントコンボリューション、カーネルポイントコンボリューション、KPConv、カーネルポイントコンボリューション、カーネルポイントコンボリューション、カーネルポイントコンボリューション、カーネルポイントコンボリューション
論文 参考訳(メタデータ) (2022-06-11T02:15:46Z) - Dynamic Convolution for 3D Point Cloud Instance Segmentation [146.7971476424351]
動的畳み込みに基づく3次元点雲からのインスタンスセグメンテーション手法を提案する。
我々は、同じ意味圏と閉投票を持つ等質点を幾何学的遠近点に対して収集する。
提案手法は提案不要であり、代わりに各インスタンスの空間的および意味的特性に適応する畳み込みプロセスを利用する。
論文 参考訳(メタデータ) (2021-07-18T09:05:16Z) - Equivariant Point Network for 3D Point Cloud Analysis [17.689949017410836]
点雲解析のための実効的で実用的なSE(3)(3次元翻訳と回転)同変ネットワークを提案する。
まず,6次元の畳み込みを2つの分離可能な畳み込み作用素に分解する新しい枠組みであるSE(3)分離点畳み込みを提案する。
第2に,同変特徴の表現性を効果的に活用するアテンション層を導入する。
論文 参考訳(メタデータ) (2021-03-25T21:57:10Z) - DyCo3D: Robust Instance Segmentation of 3D Point Clouds through Dynamic
Convolution [136.7261709896713]
本稿では,インスタンスの性質に応じて適切な畳み込みカーネルを生成するデータ駆動型アプローチを提案する。
提案手法はScanetNetV2とS3DISの両方で有望な結果が得られる。
また、現在の最先端よりも推論速度を25%以上向上させる。
論文 参考訳(メタデータ) (2020-11-26T14:56:57Z) - Quaternion Equivariant Capsule Networks for 3D Point Clouds [58.566467950463306]
本稿では,3次元回転と翻訳に同値な点雲を処理するための3次元カプセルモジュールを提案する。
カプセル間の動的ルーティングをよく知られたWeiszfeldアルゴリズムに接続する。
オペレーターに基づいて、ポーズから幾何学をアンタングルするカプセルネットワークを構築します。
論文 参考訳(メタデータ) (2019-12-27T13:51:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。