Forecasting the future development in quality and value of professional football players for applications in team management
- URL: http://arxiv.org/abs/2502.07528v1
- Date: Tue, 11 Feb 2025 13:09:09 GMT
- Title: Forecasting the future development in quality and value of professional football players for applications in team management
- Authors: Koen W. van Arem, Floris Goes-Smit, Jakob Söhl,
- Abstract summary: Data-driven models can be used to improve transfer decisions in professional football.
Recent developments have called for the use of explainable models combined with uncertainty quantification of predictions.
This paper assesses explainable machine learning models based on predictive accuracy and uncertainty quantification methods.
- Score: 0.0
- License:
- Abstract: Transfers in professional football (soccer) are risky investments because of the large transfer fees and high risks involved. Although data-driven models can be used to improve transfer decisions, existing models focus on describing players' historical progress, leaving their future performance unknown. Moreover, recent developments have called for the use of explainable models combined with uncertainty quantification of predictions. This paper assesses explainable machine learning models based on predictive accuracy and uncertainty quantification methods for the prediction of the future development in quality and transfer value of professional football players. Using a historical data set of data-driven indicators describing player quality and the transfer value of a football player, the models are trained to forecast player quality and player value one year ahead. These two prediction problems demonstrate the efficacy of tree-based models, particularly random forest and XGBoost, in making accurate predictions. In general, the random forest model is found to be the most suitable model because it provides accurate predictions as well as an uncertainty quantification method that naturally arises from the bagging procedure of the random forest model. Additionally, our research shows that the development of player performance contains nonlinear patterns and interactions between variables, and that time series information can provide useful information for the modeling of player performance metrics. Our research provides models to help football clubs make more informed, data-driven transfer decisions by forecasting player quality and transfer value.
Related papers
- F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
We formulate the demand prediction as a meta-learning problem and develop the Feature-based First-Order Model-Agnostic Meta-Learning (F-FOMAML) algorithm.
By considering domain similarities through task-specific metadata, our model improved generalization, where the excess risk decreases as the number of training tasks increases.
Compared to existing state-of-the-art models, our method demonstrates a notable improvement in demand prediction accuracy, reducing the Mean Absolute Error by 26.24% on an internal vending machine dataset and by 1.04% on the publicly accessible JD.com dataset.
arXiv Detail & Related papers (2024-06-23T21:28:50Z) - Machine Learning for Soccer Match Result Prediction [0.9002260638342727]
This chapter discusses available datasets, the types of models and features, and ways of evaluating model performance.
The aim of this chapter is to give a broad overview of the current state and potential future developments in machine learning for soccer match results prediction.
arXiv Detail & Related papers (2024-03-12T14:00:50Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
We study the effect of conflicting predictions over the set of near-optimal machine learning models.
We present theoretical results on the expected churn between models within the Rashomon set.
We show how our approach can be used to better anticipate, reduce, and avoid churn in consumer-facing applications.
arXiv Detail & Related papers (2024-02-12T16:15:25Z) - ShuttleSHAP: A Turn-Based Feature Attribution Approach for Analyzing
Forecasting Models in Badminton [52.21869064818728]
Deep learning approaches for player tactic forecasting in badminton show promising performance partially attributed to effective reasoning about rally-player interactions.
We propose a turn-based feature attribution approach, ShuttleSHAP, for analyzing forecasting models in badminton based on variants of Shapley values.
arXiv Detail & Related papers (2023-12-18T05:37:51Z) - Explainable artificial intelligence model for identifying Market Value
in Professional Soccer Players [2.2590064835234913]
Using data from about 12,000 players from Sofifa, the Boruta algorithm streamlined feature selection.
The Gradient Boosting Decision Tree (GBDT) model excelled in predictive accuracy, with an R-squared of 0.901 and a Root Mean Squared Error (RMSE) of 3,221,632.175.
arXiv Detail & Related papers (2023-11-08T11:01:32Z) - Synthetic Model Combination: An Instance-wise Approach to Unsupervised
Ensemble Learning [92.89846887298852]
Consider making a prediction over new test data without any opportunity to learn from a training set of labelled data.
Give access to a set of expert models and their predictions alongside some limited information about the dataset used to train them.
arXiv Detail & Related papers (2022-10-11T10:20:31Z) - Forecasting Future World Events with Neural Networks [68.43460909545063]
Autocast is a dataset containing thousands of forecasting questions and an accompanying news corpus.
The news corpus is organized by date, allowing us to precisely simulate the conditions under which humans made past forecasts.
We test language models on our forecasting task and find that performance is far below a human expert baseline.
arXiv Detail & Related papers (2022-06-30T17:59:14Z) - Prediction of Football Player Value using Bayesian Ensemble Approach [13.163358022899335]
We present a case study on the key factors affecting the world's top soccer players' transfer fees based on the FIFA data analysis.
To predict each player's market value, we propose an improved LightGBM model using a Tree-structured Parzen Estimator (TPE) algorithm.
arXiv Detail & Related papers (2022-06-24T07:13:53Z) - Explainable expected goal models for performance analysis in football
analytics [5.802346990263708]
This paper proposes an accurate expected goal model trained consisting of 315,430 shots from seven seasons between 2014-15 and 2020-21 of the top-five European football leagues.
To best of our knowledge, this is the first paper that demonstrates a practical application of an explainable artificial intelligence tool aggregated profiles.
arXiv Detail & Related papers (2022-06-14T23:56:03Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z) - Discovering indicators of dark horse of soccer games by deep learning
from sequential trading data [0.6526824510982799]
A deep learning model is designed and trained on a real sequential trading data from the real prediction market.
A new loss function is proposed which biases the selection toward matches with high investment return to train our model.
Full investigation of 4669 top soccer league matches showed that our model traded off prediction accuracy for high value return.
arXiv Detail & Related papers (2020-08-03T07:24:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.