Prediction of Handball Matches with Statistically Enhanced Learning via
Estimated Team Strengths
- URL: http://arxiv.org/abs/2307.11777v1
- Date: Thu, 20 Jul 2023 00:50:26 GMT
- Title: Prediction of Handball Matches with Statistically Enhanced Learning via
Estimated Team Strengths
- Authors: Florian Felice and Christophe Ley
- Abstract summary: We propose a Statistically Enhanced Learning (aka. SEL) model to predict handball games.
Our Machine Learning model augmented with SEL features outperforms state-of-the-art models with an accuracy beyond 80%.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a Statistically Enhanced Learning (aka. SEL) model to predict
handball games. Our Machine Learning model augmented with SEL features
outperforms state-of-the-art models with an accuracy beyond 80%. In this work,
we show how we construct the data set to train Machine Learning models on past
female club matches. We then compare different models and evaluate them to
assess their performance capabilities. Finally, explainability methods allow us
to change the scope of our tool from a purely predictive solution to a highly
insightful analytical tool. This can become a valuable asset for handball
teams' coaches providing valuable statistical and predictive insights to
prepare future competitions.
Related papers
- What Do Learning Dynamics Reveal About Generalization in LLM Reasoning? [83.83230167222852]
We find that a model's generalization behavior can be effectively characterized by a training metric we call pre-memorization train accuracy.
By connecting a model's learning behavior to its generalization, pre-memorization train accuracy can guide targeted improvements to training strategies.
arXiv Detail & Related papers (2024-11-12T09:52:40Z) - ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction [56.001808843574395]
Selective prediction aims to learn a reliable model that abstains from making predictions when uncertain.
Active learning aims to lower the overall labeling effort, and hence human dependence, by querying the most informative examples.
In this work, we introduce a new learning paradigm, active selective prediction, which aims to query more informative samples from the shifted target domain.
arXiv Detail & Related papers (2023-04-07T23:51:07Z) - Supervised Learning for Table Tennis Match Prediction [2.7835697868135902]
This paper proposes the use of machine learning to predict the outcome of table tennis single matches.
We use player and match statistics as features and evaluate their relative importance in an ablation study.
The results can serve as a baseline for future table tennis prediction models, and can feed back to prediction research in similar ball sports.
arXiv Detail & Related papers (2023-03-28T17:42:13Z) - Betting the system: Using lineups to predict football scores [0.0]
This paper aims to reduce randomness in football by analysing the role of lineups in final scores.
Football clubs invest millions of dollars on lineups and knowing how individual statistics translate to better outcomes can optimise investments.
Sports betting is growing exponentially and being able to predict the future is profitable and desirable.
arXiv Detail & Related papers (2022-10-12T15:47:42Z) - Plex: Towards Reliability using Pretrained Large Model Extensions [69.13326436826227]
We develop ViT-Plex and T5-Plex, pretrained large model extensions for vision and language modalities, respectively.
Plex greatly improves the state-of-the-art across reliability tasks, and simplifies the traditional protocol.
We demonstrate scaling effects over model sizes up to 1B parameters and pretraining dataset sizes up to 4B examples.
arXiv Detail & Related papers (2022-07-15T11:39:37Z) - Machine Learning in Sports: A Case Study on Using Explainable Models for
Predicting Outcomes of Volleyball Matches [0.0]
This paper explores a two-phased Explainable Artificial Intelligence(XAI) approach to predict outcomes of matches in the Brazilian volleyball League (SuperLiga)
In the first phase, we directly use the interpretable rule-based ML models that provide a global understanding of the model's behaviors.
In the second phase, we construct non-linear models such as Support Vector Machine (SVM) and Deep Neural Network (DNN) to obtain predictive performance on the volleyball matches' outcomes.
arXiv Detail & Related papers (2022-06-18T18:09:15Z) - Explainable expected goal models for performance analysis in football
analytics [5.802346990263708]
This paper proposes an accurate expected goal model trained consisting of 315,430 shots from seven seasons between 2014-15 and 2020-21 of the top-five European football leagues.
To best of our knowledge, this is the first paper that demonstrates a practical application of an explainable artificial intelligence tool aggregated profiles.
arXiv Detail & Related papers (2022-06-14T23:56:03Z) - SLIP: Self-supervision meets Language-Image Pre-training [79.53764315471543]
We study whether self-supervised learning can aid in the use of language supervision for visual representation learning.
We introduce SLIP, a multi-task learning framework for combining self-supervised learning and CLIP pre-training.
We find that SLIP enjoys the best of both worlds: better performance than self-supervision and language supervision.
arXiv Detail & Related papers (2021-12-23T18:07:13Z) - Ensembling Off-the-shelf Models for GAN Training [55.34705213104182]
We find that pretrained computer vision models can significantly improve performance when used in an ensemble of discriminators.
We propose an effective selection mechanism, by probing the linear separability between real and fake samples in pretrained model embeddings.
Our method can improve GAN training in both limited data and large-scale settings.
arXiv Detail & Related papers (2021-12-16T18:59:50Z) - Combining Machine Learning and Human Experts to Predict Match Outcomes
in Football: A Baseline Model [14.121432441882895]
We present a new application-focused benchmark dataset for prediction of match outcomes for games of football (soccer)
Our dataset is focuses on a representative time-period over 6 seasons of the English Premier League, and includes newspaper match previews from The Guardian.
The models presented in this paper achieve an accuracy of 63.18% showing a 6.9% boost on the traditional statistical methods.
arXiv Detail & Related papers (2020-12-08T11:52:14Z) - What do we expect from Multiple-choice QA Systems? [70.86513724662302]
We consider a top performing model on several Multiple Choice Question Answering (MCQA) datasets.
We evaluate it against a set of expectations one might have from such a model, using a series of zero-information perturbations of the model's inputs.
arXiv Detail & Related papers (2020-11-20T21:27:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.