論文の概要: Corporate Greenwashing Detection in Text - a Survey
- arxiv url: http://arxiv.org/abs/2502.07541v1
- Date: Tue, 11 Feb 2025 13:28:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-12 14:08:10.698834
- Title: Corporate Greenwashing Detection in Text - a Survey
- Title(参考訳): テキストによるコーポレートグリーンウォッシング検出 - 調査-
- Authors: Tom Calamai, Oana Balalau, Théo Le Guenedal, Fabian M. Suchanek,
- Abstract要約: グリーンウォッシング(Greenwashing)とは、国家や企業などの環境への影響を国民に誤解させる取り組みである。
本稿では,グリーンウォッシングを識別するための自然言語処理手法に関する科学的文献を包括的に調査する。
- 参考スコア(独自算出の注目度): 5.958302080525902
- License:
- Abstract: Greenwashing is an effort to mislead the public about the environmental impact of an entity, such as a state or company. We provide a comprehensive survey of the scientific literature addressing natural language processing methods to identify potentially misleading climate-related corporate communications, indicative of greenwashing. We break the detection of greenwashing into intermediate tasks, and review the state-of-the-art approaches for each of them. We discuss datasets, methods, and results, as well as limitations and open challenges. We also provide an overview of how far the field has come as a whole, and point out future research directions.
- Abstract(参考訳): グリーンウォッシング(Greenwashing)とは、国家や企業などの環境への影響を国民に誤解させる取り組みである。
本研究は,グリーンウォッシングの指標として,温暖化にともなう企業間コミュニケーションを誤認する可能性のある,自然言語処理手法に関する科学的文献を包括的に調査する。
グリーンウォッシングの検出を中間タスクに分割し、各タスクの最先端アプローチをレビューする。
データセット、メソッド、結果、および制限やオープンな課題について議論する。
また、この分野の全体像を概観し、今後の研究の方向性を指摘する。
関連論文リスト
- A Survey of Stance Detection on Social Media: New Directions and Perspectives [50.27382951812502]
姿勢検出は 感情コンピューティングにおける 重要なサブフィールドとして現れました
近年は、効果的な姿勢検出手法の開発に対する研究の関心が高まっている。
本稿では,ソーシャルメディア上での姿勢検出手法に関する包括的調査を行う。
論文 参考訳(メタデータ) (2024-09-24T03:06:25Z) - EcoVerse: An Annotated Twitter Dataset for Eco-Relevance Classification, Environmental Impact Analysis, and Stance Detection [0.0]
EcoVerseは、さまざまな環境トピックにまたがる3,023のツイートからなる、英語の注釈付きTwitterデータセットである。
本研究では,環境関連分類,スタンス検出,環境影響分析のための独自のアプローチの導入を目的とした3段階のアノテーションスキームを提案する。
論文 参考訳(メタデータ) (2024-04-08T01:21:11Z) - Automated Fact-Checking of Climate Change Claims with Large Language
Models [3.1080484250243425]
本稿では、気候変動の主張の事実チェックを自動化するために設計された、新しいAIベースのツールであるCliminatorを提案する。
Climinatorは、様々な科学的視点を合成するために、革新的なMediator-Advocateフレームワークを使用している。
我々のモデルは、気候フィードバックと懐疑的な科学から収集されたクレームをテストする際に、顕著な精度を示す。
論文 参考訳(メタデータ) (2024-01-23T08:49:23Z) - Leveraging Language Models to Detect Greenwashing [39.58317527488534]
本稿では,グリーンウォッシングリスクを考慮に入れたラベルに基づいて,言語モデルを学習するための新たな予備的手法を提案する。
我々の最良のモデルは平均精度スコア86.34%、F1スコア0.67を達成し、概念実証手法が探索の有望な方向を示すことを示した。
論文 参考訳(メタデータ) (2023-10-30T21:41:49Z) - Environmental Claim Detection [6.2887102994549595]
本稿では,環境クレーム検出の課題を紹介する。
専門家による注釈付きデータセットと、このデータセットでトレーニングされたモデルをリリースします。
2015年のパリ協定以降、環境要求件数は着実に増加していることが判明した。
論文 参考訳(メタデータ) (2022-09-01T14:51:07Z) - Climate Change & Computer Audition: A Call to Action and Overview on
Audio Intelligence to Help Save the Planet [98.97255654573662]
この研究は、オーディオインテリジェンスが気候に関わる課題を克服するために貢献できる領域の概要を提供する。
我々は、地球、水、空気、火、エーテルの5つの要素に従って、潜在的なコンピュータオーディションの応用を分類する。
論文 参考訳(メタデータ) (2022-03-10T13:32:31Z) - ZeroWaste Dataset: Towards Automated Waste Recycling [51.053682077915546]
産業レベルの廃棄物検出・分別データセットZeroWasteについて述べる。
このデータセットには、実際の廃棄物処理工場から収集された1800以上のビデオフレームが含まれている。
最先端のセグメンテーション手法では,対象物を正しく検出・分類することが困難であることを示す。
論文 参考訳(メタデータ) (2021-06-04T22:17:09Z) - Analyzing Sustainability Reports Using Natural Language Processing [68.8204255655161]
近年、企業は環境への影響を緩和し、気候変動の状況に適応することを目指している。
これは、環境・社会・ガバナンス(ESG)の傘下にある様々な種類の気候リスクと暴露を網羅する、ますます徹底した報告を通じて報告されている。
本稿では,本稿で開発したツールと方法論について紹介する。
論文 参考訳(メタデータ) (2020-11-03T21:22:42Z) - Positioning yourself in the maze of Neural Text Generation: A
Task-Agnostic Survey [54.34370423151014]
本稿では, ストーリーテリング, 要約, 翻訳など, 世代ごとのタスクインパクトをリレーする手法の構成要素について検討する。
本稿では,学習パラダイム,事前学習,モデリングアプローチ,復号化,各分野における重要な課題について,命令的手法の抽象化を提案する。
論文 参考訳(メタデータ) (2020-10-14T17:54:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。