論文の概要: SEMU: Singular Value Decomposition for Efficient Machine Unlearning
- arxiv url: http://arxiv.org/abs/2502.07587v1
- Date: Tue, 11 Feb 2025 14:36:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-12 14:06:51.803786
- Title: SEMU: Singular Value Decomposition for Efficient Machine Unlearning
- Title(参考訳): SEMU: 効率的な機械学習のための特異値分解
- Authors: Marcin Sendera, Łukasz Struski, Kamil Książek, Kryspin Musiol, Jacek Tabor, Dawid Rymarczyk,
- Abstract要約: マシン・アンラーニング(MU)は、今後の安全規則を満たすためにますます重要になっている。
効率的な機械学習(SEMU)のための特異値分解法を提案する。
SEMUは変更が必要なモデルパラメータの数を最小限に抑え、不要な知識を効果的に除去する。
- 参考スコア(独自算出の注目度): 9.61813564612515
- License:
- Abstract: While the capabilities of generative foundational models have advanced rapidly in recent years, methods to prevent harmful and unsafe behaviors remain underdeveloped. Among the pressing challenges in AI safety, machine unlearning (MU) has become increasingly critical to meet upcoming safety regulations. Most existing MU approaches focus on altering the most significant parameters of the model. However, these methods often require fine-tuning substantial portions of the model, resulting in high computational costs and training instabilities, which are typically mitigated by access to the original training dataset. In this work, we address these limitations by leveraging Singular Value Decomposition (SVD) to create a compact, low-dimensional projection that enables the selective forgetting of specific data points. We propose Singular Value Decomposition for Efficient Machine Unlearning (SEMU), a novel approach designed to optimize MU in two key aspects. First, SEMU minimizes the number of model parameters that need to be modified, effectively removing unwanted knowledge while making only minimal changes to the model's weights. Second, SEMU eliminates the dependency on the original training dataset, preserving the model's previously acquired knowledge without additional data requirements. Extensive experiments demonstrate that SEMU achieves competitive performance while significantly improving efficiency in terms of both data usage and the number of modified parameters.
- Abstract(参考訳): 近年, 生成基礎モデルの能力は急速に向上しているが, 有害かつ安全でない行動を防ぐ方法はいまだ未発達である。
AIの安全性の急激な課題の中で、機械学習(MU)は、今後の安全規則を満たすためにますます重要になっている。
既存のMUアプローチのほとんどは、モデルの最も重要なパラメータを変更することに重点を置いています。
しかし、これらの手法はモデルの大部分を微調整する必要があることが多く、結果として計算コストとトレーニングの不安定性が高くなり、通常は元のトレーニングデータセットへのアクセスによって緩和される。
本研究では,Singular Value Decomposition(SVD)を利用して,特定のデータポイントを選択的に忘れることのできる,コンパクトで低次元の投影を実現する。
本稿では,2つの重要な側面においてMUを最適化する新しい手法である,効率的な機械学習のための特異値分解(SEMU)を提案する。
まず、SEMUは修正が必要なモデルパラメータの数を最小限に抑え、モデルの重みを最小限に変更するだけで、不要な知識を効果的に除去する。
第二に、SEMUはオリジナルのトレーニングデータセットへの依存性を排除し、モデルが以前取得した知識を追加のデータ要件なしに保存する。
実験の結果,SEMUはデータ使用量と修正パラメータ数の両方で効率を著しく向上し,競争性能が向上することが示された。
関連論文リスト
- Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
機械学習 -- 事前訓練された機械学習モデルで、小さな"ターゲットセット"トレーニングデータを効率的に削除する -- は、最近関心を集めている。
最近の研究では、機械学習技術はこのような困難な環境では耐えられないことが示されている。
論文 参考訳(メタデータ) (2024-10-30T17:20:10Z) - Deep Unlearn: Benchmarking Machine Unlearning [7.450700594277741]
機械学習(MU)は、訓練された機械学習モデルの学習可能なパラメータから、特定のデータポイントの影響を取り除くことを目的としている。
本稿では,様々なベンチマークデータセットおよびモデルを対象とした18種類の最先端MU手法について検討する。
論文 参考訳(メタデータ) (2024-10-02T06:41:58Z) - Towards Robust and Cost-Efficient Knowledge Unlearning for Large Language Models [25.91643745340183]
大規模言語モデル(LLM)は、大量のテキストコーパスの事前学習を通じて、強い推論と記憶能力を示す。
これはプライバシーと著作権侵害のリスクを生じさせ、効率的な機械学習手法の必要性を強調している。
LLMのための堅牢で効率的なアンラーニングのための2つの新しい手法を提案する。
論文 参考訳(メタデータ) (2024-08-13T04:18:32Z) - Learning to Unlearn for Robust Machine Unlearning [6.488418950340473]
学習過程を最適化する新しいLTU(Learning-to-Unlearn)フレームワークを提案する。
LTUは、モデルが一般化可能な知識を効果的に保存することを容易にするメタ最適化スキームを含んでいる。
また、記憶と忘れのための最適化トラジェクトリを整列するグラディエント調和戦略も導入する。
論文 参考訳(メタデータ) (2024-07-15T07:36:00Z) - EsaCL: Efficient Continual Learning of Sparse Models [10.227171407348326]
連続的な学習設定の主な課題は、以前に学習したタスクを実行する方法を忘れずに、タスクのシーケンスを効率的に学習することである。
本研究では,モデルの予測力に悪影響を及ぼすことなく,冗長なパラメータを自動生成する,スパースモデル(EsaCL)の効率的な連続学習法を提案する。
論文 参考訳(メタデータ) (2024-01-11T04:59:44Z) - Uncertainty-aware Parameter-Efficient Self-training for Semi-supervised
Language Understanding [38.11411155621616]
我々は,主に半教師あり学習の手法として,自己学習について研究している。
我々は,新しい不確かさを意識した自己学習フレームワークであるUPETを紹介する。
UPETは性能と効率の面で大幅に向上したことを示す。
論文 参考訳(メタデータ) (2023-10-19T02:18:29Z) - Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
継続的な学習は、モデルが以前に学習した情報を忘れてしまう破滅的な忘れ込みの課題を克服しようとする。
本稿では,パラメータ成長の制約を緩和し,破滅的な忘れを減らし,新しい事前手法を提案する。
以上の結果から, BAdamは, 単頭クラスインクリメンタル実験に挑戦する先行手法に対して, 最先端の性能を達成できることが示唆された。
論文 参考訳(メタデータ) (2023-09-15T17:10:51Z) - Value function estimation using conditional diffusion models for control [62.27184818047923]
拡散値関数(DVF)と呼ばれる単純なアルゴリズムを提案する。
拡散モデルを用いて環境-ロボット相互作用の連成多段階モデルを学ぶ。
本稿では,DVFを用いて複数のコントローラの状態を効率よく把握する方法を示す。
論文 参考訳(メタデータ) (2023-06-09T18:40:55Z) - Model-Agnostic Multitask Fine-tuning for Few-shot Vision-Language
Transfer Learning [59.38343286807997]
未知タスクの視覚言語モデルのためのモデル非依存型マルチタスクファインチューニング(MAMF)を提案する。
モデルに依存しないメタラーニング(MAML)と比較して、MAMFは二段階最適化を捨て、一階勾配のみを使用する。
MAMFは5つのベンチマークデータセット上で、数ショットの転送学習において古典的な微調整法よりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-03-09T17:26:53Z) - Hyperparameter-free Continuous Learning for Domain Classification in
Natural Language Understanding [60.226644697970116]
ドメイン分類は自然言語理解(NLU)の基本課題である
既存の継続的な学習アプローチの多くは、低い精度とパフォーマンスの変動に悩まされている。
本研究では,テキストデータに対するパラメータフリー連続学習モデルを提案する。
論文 参考訳(メタデータ) (2022-01-05T02:46:16Z) - Discrete Auto-regressive Variational Attention Models for Text Modeling [53.38382932162732]
変分オートエンコーダ(VAE)はテキストモデリングに広く応用されている。
情報不足と後部崩壊という2つの課題に悩まされている。
本稿では,自己回帰変動注意モデル(DAVAM)を提案する。
論文 参考訳(メタデータ) (2021-06-16T06:36:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。