Algorithmic Aspects of Strategic Trading
- URL: http://arxiv.org/abs/2502.07606v1
- Date: Tue, 11 Feb 2025 14:56:16 GMT
- Title: Algorithmic Aspects of Strategic Trading
- Authors: Michael Kearns, Mirah Shi,
- Abstract summary: We give an efficient algorithm for computing best responses to temporary impact setting.
We show can be computed efficiently via an implementation of Follow the Perturbed Leader.
- Score: 2.6162433502464757
- License:
- Abstract: Algorithmic trading in modern financial markets is widely acknowledged to exhibit strategic, game-theoretic behaviors whose complexity can be difficult to model. A recent series of papers (Chriss, 2024b,c,a, 2025) has made progress in the setting of trading for position building. Here parties wish to buy or sell a fixed number of shares in a fixed time period in the presence of both temporary and permanent market impact, resulting in exponentially large strategy spaces. While these papers primarily consider the existence and structural properties of equilibrium strategies, in this work we focus on the algorithmic aspects of the proposed model. We give an efficient algorithm for computing best responses, and show that while the temporary impact only setting yields a potential game, best response dynamics do not generally converge for the general setting, for which no fast algorithm for (Nash) equilibrium computation is known. This leads us to consider the broader notion of Coarse Correlated Equilibria (CCE), which we show can be computed efficiently via an implementation of Follow the Perturbed Leader (FTPL). We illustrate the model and our results with an experimental investigation, where FTPL exhibits interesting behavior in different regimes of the relative weighting between temporary and permanent market impact.
Related papers
- Deep Reinforcement Learning for Online Optimal Execution Strategies [49.1574468325115]
This paper tackles the challenge of learning non-Markovian optimal execution strategies in dynamic financial markets.
We introduce a novel actor-critic algorithm based on Deep Deterministic Policy Gradient (DDPG)
We show that our algorithm successfully approximates the optimal execution strategy.
arXiv Detail & Related papers (2024-10-17T12:38:08Z) - Deviations from the Nash equilibrium and emergence of tacit collusion in a two-player optimal execution game with reinforcement learning [0.9208007322096533]
We study a scenario in which two autonomous agents learn to liquidate the same asset optimally in the presence of market impact.
Our results show that the strategies learned by the agents deviate significantly from the Nash equilibrium of the corresponding market impact game.
We explore how different levels of market volatility influence the agents' performance and the equilibria they discover.
arXiv Detail & Related papers (2024-08-21T16:54:53Z) - Reinforcement Learning in High-frequency Market Making [7.740207107300432]
This paper establishes a new and comprehensive theoretical analysis for the application of reinforcement learning (RL) in high-frequency market making.
We bridge the modern RL theory and the continuous-time statistical models in high-frequency financial economics.
arXiv Detail & Related papers (2024-07-14T22:07:48Z) - Data Cross-Segmentation for Improved Generalization in Reinforcement
Learning Based Algorithmic Trading [5.75899596101548]
We propose a Reinforcement Learning (RL) algorithm that trades based on signals from a learned predictive model.
We test our algorithm on 20+ years of equity data from Bursa Malaysia.
arXiv Detail & Related papers (2023-07-18T16:00:02Z) - Spatio-Temporal Momentum: Jointly Learning Time-Series and
Cross-Sectional Strategies [3.351714665243138]
We introduce Spatio-Temporal Momentum strategies, which unify both time-series and cross-sectional momentum strategies by trading assets based on their cross-sectional momentum features over time.
We demonstrate that the model is able to retain its performance over benchmarks in the presence of high transaction costs.
In particular, we find that the model when coupled with least absolute shrinkage and turnover regularization results in the best performance over various transaction cost scenarios.
arXiv Detail & Related papers (2023-02-20T18:59:05Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - Trading with the Momentum Transformer: An Intelligent and Interpretable
Architecture [2.580765958706854]
We introduce the Momentum Transformer, an attention-based architecture which outperforms the benchmarks.
We observe remarkable structure in the attention patterns, with significant peaks of importance at momentum turning points.
Through the addition of an interpretable variable selection network, we observe how CPD helps our model to move away from trading predominantly on daily returns data.
arXiv Detail & Related papers (2021-12-16T00:04:12Z) - Learning Equilibria in Matching Markets from Bandit Feedback [139.29934476625488]
We develop a framework and algorithms for learning stable market outcomes under uncertainty.
Our work takes a first step toward elucidating when and how stable matchings arise in large, data-driven marketplaces.
arXiv Detail & Related papers (2021-08-19T17:59:28Z) - Universal Trading for Order Execution with Oracle Policy Distillation [99.57416828489568]
We propose a novel universal trading policy optimization framework to bridge the gap between the noisy yet imperfect market states and the optimal action sequences for order execution.
We show that our framework can better guide the learning of the common policy towards practically optimal execution by an oracle teacher with perfect information.
arXiv Detail & Related papers (2021-01-28T05:52:18Z) - A Deep Reinforcement Learning Framework for Continuous Intraday Market
Bidding [69.37299910149981]
A key component for the successful renewable energy sources integration is the usage of energy storage.
We propose a novel modelling framework for the strategic participation of energy storage in the European continuous intraday market.
An distributed version of the fitted Q algorithm is chosen for solving this problem due to its sample efficiency.
Results indicate that the agent converges to a policy that achieves in average higher total revenues than the benchmark strategy.
arXiv Detail & Related papers (2020-04-13T13:50:13Z) - Public Bayesian Persuasion: Being Almost Optimal and Almost Persuasive [57.47546090379434]
We study the public persuasion problem in the general setting with: (i) arbitrary state spaces; (ii) arbitrary action spaces; (iii) arbitrary sender's utility functions.
We provide a quasi-polynomial time bi-criteria approximation algorithm for arbitrary public persuasion problems that, in specific settings, yields a QPTAS.
arXiv Detail & Related papers (2020-02-12T18:59:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.