Quantum Reinforcement Learning Trading Agent for Sector Rotation in the Taiwan Stock Market
- URL: http://arxiv.org/abs/2506.20930v1
- Date: Thu, 26 Jun 2025 01:29:19 GMT
- Title: Quantum Reinforcement Learning Trading Agent for Sector Rotation in the Taiwan Stock Market
- Authors: Chi-Sheng Chen, Xinyu Zhang, Ya-Chuan Chen,
- Abstract summary: We propose a hybrid quantum-classical reinforcement learning framework for sector rotation in the Taiwan stock market.<n>Although quantum-enhanced models consistently achieve higher training rewards, they underperform classical models in real-world investment metrics.<n>This discrepancy highlights a core challenge in applying reinforcement learning to financial domains.
- Score: 7.360168388085351
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a hybrid quantum-classical reinforcement learning framework for sector rotation in the Taiwan stock market. Our system employs Proximal Policy Optimization (PPO) as the backbone algorithm and integrates both classical architectures (LSTM, Transformer) and quantum-enhanced models (QNN, QRWKV, QASA) as policy and value networks. An automated feature engineering pipeline extracts financial indicators from capital share data to ensure consistent model input across all configurations. Empirical backtesting reveals a key finding: although quantum-enhanced models consistently achieve higher training rewards, they underperform classical models in real-world investment metrics such as cumulative return and Sharpe ratio. This discrepancy highlights a core challenge in applying reinforcement learning to financial domains -- namely, the mismatch between proxy reward signals and true investment objectives. Our analysis suggests that current reward designs may incentivize overfitting to short-term volatility rather than optimizing risk-adjusted returns. This issue is compounded by the inherent expressiveness and optimization instability of quantum circuits under Noisy Intermediate-Scale Quantum (NISQ) constraints. We discuss the implications of this reward-performance gap and propose directions for future improvement, including reward shaping, model regularization, and validation-based early stopping. Our work offers a reproducible benchmark and critical insights into the practical challenges of deploying quantum reinforcement learning in real-world finance.
Related papers
- TensoMeta-VQC: A Tensor-Train-Guided Meta-Learning Framework for Robust and Scalable Variational Quantum Computing [60.996803677584424]
TensoMeta-VQC is a novel tensor-train (TT)-guided meta-learning framework designed to improve the robustness and scalability of VQC significantly.<n>Our framework fully delegates the generation of quantum circuit parameters to a classical TT network, effectively decoupling optimization from quantum hardware.
arXiv Detail & Related papers (2025-08-01T23:37:55Z) - Intra-Trajectory Consistency for Reward Modeling [67.84522106537274]
We develop an intra-trajectory consistency regularization to enforce that adjacent processes with higher next-token generation probability maintain more consistent rewards.<n>We show that the reward model trained with the proposed regularization induces better DPO-aligned policies and achieves better best-of-N (BON) inference-time verification results.
arXiv Detail & Related papers (2025-06-10T12:59:14Z) - Discriminative Policy Optimization for Token-Level Reward Models [55.98642069903191]
Process reward models (PRMs) provide more nuanced supervision compared to outcome reward models (ORMs)<n>Q-RM explicitly learns token-level Q-functions from preference data without relying on fine-grained annotations.<n>Reinforcement learning with Q-RM significantly enhances training efficiency, achieving convergence 12 times faster than ORM on GSM8K and 11 times faster than step-level PRM on MATH.
arXiv Detail & Related papers (2025-05-29T11:40:34Z) - End-to-End Portfolio Optimization with Quantum Annealing [0.48516757555267037]
Using hybrid quantum-classical models, the study shows combined approaches effectively handle complex optimization better than classical methods.<n> Empirical results demonstrate a portfolio increase of 200,000 Indian Rupees over the benchmark.
arXiv Detail & Related papers (2025-04-10T21:31:30Z) - HQNN-FSP: A Hybrid Classical-Quantum Neural Network for Regression-Based Financial Stock Market Prediction [3.5418331252013897]
This study explores the potential of hybrid quantum-classical approaches to assist in financial trend prediction.<n>A custom Quantum Neural Network (QNN) regressor is introduced, designed with a novel ansatz tailored for financial applications.
arXiv Detail & Related papers (2025-03-19T16:44:21Z) - Contextual Quantum Neural Networks for Stock Price Prediction [0.0]
We apply quantum machine learning (QML) to predict the stock prices of multiple assets using a contextual quantum neural network.<n>This architecture represents the first of its kind in quantum finance, offering superior predictive power and computational efficiency.<n>Our findings highlight the transformative potential of QML in financial applications, paving the way for more advanced, resource-efficient quantum algorithms.
arXiv Detail & Related papers (2025-02-26T22:39:23Z) - Benchmarking Post-Training Quantization in LLMs: Comprehensive Taxonomy, Unified Evaluation, and Comparative Analysis [89.60263788590893]
Post-training Quantization (PTQ) technique has been extensively adopted for large language models (LLMs) compression.<n>Existing algorithms focus primarily on performance, overlooking the trade-off among model size, performance, and quantization bitwidth.<n>We provide a novel benchmark for LLMs PTQ in this paper.
arXiv Detail & Related papers (2025-02-18T07:35:35Z) - LEP-QNN: Loan Eligibility Prediction Using Quantum Neural Networks [4.2435928520499635]
We propose a novel approach that employs Quantum Machine Learning (QML) for Loan Eligibility Prediction using Quantum Neural Networks (LEP-QNN)<n>Our innovative approach achieves an accuracy of 98% in predicting loan eligibility from a single, comprehensive dataset.<n>This research showcases the potential of QML in financial predictions and establishes a foundational guide for advancing QML technologies.
arXiv Detail & Related papers (2024-12-04T09:35:03Z) - BreakGPT: Leveraging Large Language Models for Predicting Asset Price Surges [55.2480439325792]
This paper introduces BreakGPT, a novel large language model (LLM) architecture adapted specifically for time series forecasting and the prediction of sharp upward movements in asset prices.
We showcase BreakGPT as a promising solution for financial forecasting with minimal training and as a strong competitor for capturing both local and global temporal dependencies.
arXiv Detail & Related papers (2024-11-09T05:40:32Z) - VinePPO: Refining Credit Assignment in RL Training of LLMs [66.80143024475635]
We propose VinePPO, a straightforward approach that leverages the flexibility of language environments to compute unbiased Monte Carlo-based estimates.<n>Our method consistently outperforms PPO and other baselines across MATH and GSM8K datasets in less wall-clock time.
arXiv Detail & Related papers (2024-10-02T15:49:30Z) - QADQN: Quantum Attention Deep Q-Network for Financial Market Prediction [6.3671741591443105]
This paper introduces a Quantum Attention Deep Q-Network (QADQN) approach to address these challenges through quantum-enhanced reinforcement learning.
We gauge the QADQN agent's performance on historical data from major market indices, including the S&P 500.
Our empirical results demonstrate the QADQN's superior performance, achieving better risk-adjusted returns.
arXiv Detail & Related papers (2024-08-06T10:41:46Z) - Dynamic Asset Allocation with Expected Shortfall via Quantum Annealing [0.0]
We propose a hybrid quantum-classical algorithm to solve a dynamic asset allocation problem.
We compare the results from D-Wave's 2000Q and Advantage quantum annealers using real-world financial data.
Experiments on assets with higher correlations tend to perform better, which may help to design practical quantum applications in the near term.
arXiv Detail & Related papers (2021-12-06T17:39:43Z) - Model-Augmented Q-learning [112.86795579978802]
We propose a MFRL framework that is augmented with the components of model-based RL.
Specifically, we propose to estimate not only the $Q$-values but also both the transition and the reward with a shared network.
We show that the proposed scheme, called Model-augmented $Q$-learning (MQL), obtains a policy-invariant solution which is identical to the solution obtained by learning with true reward.
arXiv Detail & Related papers (2021-02-07T17:56:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.