Divide and Merge: Motion and Semantic Learning in End-to-End Autonomous Driving
- URL: http://arxiv.org/abs/2502.07631v2
- Date: Wed, 02 Apr 2025 09:10:39 GMT
- Title: Divide and Merge: Motion and Semantic Learning in End-to-End Autonomous Driving
- Authors: Yinzhe Shen, Omer Sahin Tas, Kaiwen Wang, Royden Wagner, Christoph Stiller,
- Abstract summary: We propose Neural-Bayes motion decoding, a novel parallel detection, tracking, and prediction method.<n>We employ interactive semantic decoding to enhance information exchange in semantic tasks, promoting positive transfer.<n> Experiments on the nuScenes dataset with UniAD and SparseDrive confirm the effectiveness of our divide and merge approach.
- Score: 7.620469713146574
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Perceiving the environment and its changes over time corresponds to two fundamental yet heterogeneous types of information: semantics and motion. Previous end-to-end autonomous driving works represent both types of information in a single feature vector. However, including motion related tasks, such as prediction and planning, impairs detection and tracking performance, a phenomenon known as negative transfer in multi-task learning. To address this issue, we propose Neural-Bayes motion decoding, a novel parallel detection, tracking, and prediction method that separates semantic and motion learning. Specifically, we employ a set of learned motion queries that operate in parallel with detection and tracking queries, sharing a unified set of recursively updated reference points. Moreover, we employ interactive semantic decoding to enhance information exchange in semantic tasks, promoting positive transfer. Experiments on the nuScenes dataset with UniAD and SparseDrive confirm the effectiveness of our divide and merge approach, resulting in performance improvements across perception, prediction, and planning. Our code is available at https://github.com/shenyinzhe/DMAD.
Related papers
- Event-Based Tracking Any Point with Motion-Augmented Temporal Consistency [58.719310295870024]
This paper presents an event-based framework for tracking any point.<n>It tackles the challenges posed by spatial sparsity and motion sensitivity in events.<n>It achieves 150% faster processing with competitive model parameters.
arXiv Detail & Related papers (2024-12-02T09:13:29Z) - I-MPN: Inductive Message Passing Network for Efficient Human-in-the-Loop Annotation of Mobile Eye Tracking Data [4.487146086221174]
We present a novel human-centered learning algorithm designed for automated object recognition within mobile eye-tracking settings.
Our approach seamlessly integrates an object detector with a spatial relation-aware inductive message-passing network (I-MPN), harnessing node profile information and capturing object correlations.
arXiv Detail & Related papers (2024-06-10T13:08:31Z) - Learning Manipulation by Predicting Interaction [85.57297574510507]
We propose a general pre-training pipeline that learns Manipulation by Predicting the Interaction.
The experimental results demonstrate that MPI exhibits remarkable improvement by 10% to 64% compared with previous state-of-the-art in real-world robot platforms.
arXiv Detail & Related papers (2024-06-01T13:28:31Z) - T4P: Test-Time Training of Trajectory Prediction via Masked Autoencoder and Actor-specific Token Memory [39.021321011792786]
Trajectory prediction is a challenging problem that requires considering interactions among multiple actors.
Data-driven approaches have been used to address this complex problem, but they suffer from unreliable predictions under distribution shifts during test time.
We propose several online learning methods using regression loss from the ground truth of observed data.
Our method surpasses the performance of existing state-of-the-art online learning methods in terms of both prediction accuracy and computational efficiency.
arXiv Detail & Related papers (2024-03-15T06:47:14Z) - Improved LiDAR Odometry and Mapping using Deep Semantic Segmentation and
Novel Outliers Detection [1.0334138809056097]
We propose a novel framework for real-time LiDAR odometry and mapping based on LOAM architecture for fast moving platforms.
Our framework utilizes semantic information produced by a deep learning model to improve point-to-line and point-to-plane matching.
We study the effect of improving the matching process on the robustness of LiDAR odometry against high speed motion.
arXiv Detail & Related papers (2024-03-05T16:53:24Z) - Simultaneous Clutter Detection and Semantic Segmentation of Moving
Objects for Automotive Radar Data [12.96486891333286]
Radar sensors are an important part of the environment perception system of autonomous vehicles.
One of the first steps during the processing of radar point clouds is often the detection of clutter.
Another common objective is the semantic segmentation of moving road users.
We show that our setup is highly effective and outperforms every existing network for semantic segmentation on the RadarScenes dataset.
arXiv Detail & Related papers (2023-11-13T11:29:38Z) - What Makes Pre-Trained Visual Representations Successful for Robust
Manipulation? [57.92924256181857]
We find that visual representations designed for manipulation and control tasks do not necessarily generalize under subtle changes in lighting and scene texture.
We find that emergent segmentation ability is a strong predictor of out-of-distribution generalization among ViT models.
arXiv Detail & Related papers (2023-11-03T18:09:08Z) - Visual Exemplar Driven Task-Prompting for Unified Perception in
Autonomous Driving [100.3848723827869]
We present an effective multi-task framework, VE-Prompt, which introduces visual exemplars via task-specific prompting.
Specifically, we generate visual exemplars based on bounding boxes and color-based markers, which provide accurate visual appearances of target categories.
We bridge transformer-based encoders and convolutional layers for efficient and accurate unified perception in autonomous driving.
arXiv Detail & Related papers (2023-03-03T08:54:06Z) - FineDiving: A Fine-grained Dataset for Procedure-aware Action Quality
Assessment [93.09267863425492]
We argue that understanding both high-level semantics and internal temporal structures of actions in competitive sports videos is the key to making predictions accurate and interpretable.
We construct a new fine-grained dataset, called FineDiving, developed on diverse diving events with detailed annotations on action procedures.
arXiv Detail & Related papers (2022-04-07T17:59:32Z) - Audio-Adaptive Activity Recognition Across Video Domains [112.46638682143065]
We leverage activity sounds for domain adaptation as they have less variance across domains and can reliably indicate which activities are not happening.
We propose an audio-adaptive encoder and associated learning methods that discriminatively adjust the visual feature representation.
We also introduce the new task of actor shift, with a corresponding audio-visual dataset, to challenge our method with situations where the activity appearance changes dramatically.
arXiv Detail & Related papers (2022-03-27T08:15:20Z) - DIAL: Deep Interactive and Active Learning for Semantic Segmentation in
Remote Sensing [34.209686918341475]
We propose to build up a collaboration between a deep neural network and a human in the loop.
In a nutshell, the agent iteratively interacts with the network to correct its initially flawed predictions.
We show that active learning based on uncertainty estimation enables to quickly lead the user towards mistakes.
arXiv Detail & Related papers (2022-01-04T09:11:58Z) - Decoder Fusion RNN: Context and Interaction Aware Decoders for
Trajectory Prediction [53.473846742702854]
We propose a recurrent, attention-based approach for motion forecasting.
Decoder Fusion RNN (DF-RNN) is composed of a recurrent behavior encoder, an inter-agent multi-headed attention module, and a context-aware decoder.
We demonstrate the efficacy of our method by testing it on the Argoverse motion forecasting dataset and show its state-of-the-art performance on the public benchmark.
arXiv Detail & Related papers (2021-08-12T15:53:37Z) - IntentNet: Learning to Predict Intention from Raw Sensor Data [86.74403297781039]
In this paper, we develop a one-stage detector and forecaster that exploits both 3D point clouds produced by a LiDAR sensor as well as dynamic maps of the environment.
Our multi-task model achieves better accuracy than the respective separate modules while saving computation, which is critical to reducing reaction time in self-driving applications.
arXiv Detail & Related papers (2021-01-20T00:31:52Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
In this paper, we aim to learn scene-consistent motion forecasts of complex urban traffic directly from sensor data.
We model the scene as an interaction graph and employ powerful graph neural networks to learn a distributed latent representation of the scene.
arXiv Detail & Related papers (2020-07-23T14:31:25Z) - Learning Invariant Representations for Reinforcement Learning without
Reconstruction [98.33235415273562]
We study how representation learning can accelerate reinforcement learning from rich observations, such as images, without relying either on domain knowledge or pixel-reconstruction.
Bisimulation metrics quantify behavioral similarity between states in continuous MDPs.
We demonstrate the effectiveness of our method at disregarding task-irrelevant information using modified visual MuJoCo tasks.
arXiv Detail & Related papers (2020-06-18T17:59:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.