AI-driven Personalized Privacy Assistants: a Systematic Literature Review
- URL: http://arxiv.org/abs/2502.07693v4
- Date: Tue, 20 May 2025 11:35:47 GMT
- Title: AI-driven Personalized Privacy Assistants: a Systematic Literature Review
- Authors: Victor Morel, Leonardo Iwaya, Simone Fischer-Hübner,
- Abstract summary: We present a Systematic Literature Review (SLR) to map the existing solutions found in the scientific literature.<n>We screened several hundred unique research papers over the recent years (2013-2025), constructing a classification from 41 included papers.<n>We provide a comprehensive classification for AI-driven PPAs, delving into their architectural choices, system contexts, types of AI used, data sources, types of decisions, and control over decisions, among other facets.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, several personalized assistants based on AI have been researched and developed to help users make privacy-related decisions. These AI-driven Personalized Privacy Assistants (AI-driven PPAs) can provide significant benefits for users, who might otherwise struggle with making decisions about their personal data in online environments that often overload them with different privacy decision requests. So far, no studies have systematically investigated the emerging topic of AI-driven PPAs, classifying their underlying technologies, architecture and features, including decision types or the accuracy of their decisions. To fill this gap, we present a Systematic Literature Review (SLR) to map the existing solutions found in the scientific literature, which allows reasoning about existing approaches and open challenges for this research field. We screened several hundred unique research papers over the recent years (2013-2025), constructing a classification from 41 included papers. As a result, this SLR reviews several aspects of existing research on AI-driven PPAs in terms of types of publications, contributions, methodological quality, and other quantitative insights. Furthermore, we provide a comprehensive classification for AI-driven PPAs, delving into their architectural choices, system contexts, types of AI used, data sources, types of decisions, and control over decisions, among other facets. Based on our SLR, we further underline the research gaps and challenges and formulate recommendations for the design and development of AI-driven PPAs as well as avenues for future research.
Related papers
- ResearcherBench: Evaluating Deep AI Research Systems on the Frontiers of Scientific Inquiry [22.615102398311432]
We introduce ResearcherBench, the first benchmark focused on evaluating the capabilities of deep AI research systems.<n>We compiled a dataset of 65 research questions expertly selected from real-world scientific scenarios.<n>OpenAI Deep Research and Gemini Deep Research significantly outperform other systems, with particular strength in open-ended consulting questions.
arXiv Detail & Related papers (2025-07-22T06:51:26Z) - Deep Research Agents: A Systematic Examination And Roadmap [79.04813794804377]
Deep Research (DR) agents are designed to tackle complex, multi-turn informational research tasks.<n>In this paper, we conduct a detailed analysis of the foundational technologies and architectural components that constitute DR agents.
arXiv Detail & Related papers (2025-06-22T16:52:48Z) - Multi-Objective Recommendation in the Era of Generative AI: A Survey of Recent Progress and Future Prospects [11.092520571626732]
generative AI enables content generation, data synthesis, and personalized experiences.<n>Generative AI helps to address the issue of data sparsity and improving the overall performance of recommendation systems.<n>There remains a lack of comprehensive studies on multi-objective recommendation systems based on generative AI technologies.
arXiv Detail & Related papers (2025-06-20T10:30:39Z) - The AI Imperative: Scaling High-Quality Peer Review in Machine Learning [49.87236114682497]
We argue that AI-assisted peer review must become an urgent research and infrastructure priority.<n>We propose specific roles for AI in enhancing factual verification, guiding reviewer performance, assisting authors in quality improvement, and supporting ACs in decision-making.
arXiv Detail & Related papers (2025-06-09T18:37:14Z) - AI in Software Engineering: Perceived Roles and Their Impact on Adoption [0.0]
This paper investigates how developers conceptualize AI-powered Development Tools.
We identify two primary Mental Models: AI as an inanimate tool and AI as a human-like teammate.
arXiv Detail & Related papers (2025-04-29T00:37:49Z) - Leveraging LLMs for User Stories in AI Systems: UStAI Dataset [0.38233569758620056]
Large Language Models (LLMs) are emerging as a promising alternative to human-generated text.<n>This paper investigates the potential use of LLMs to generate user stories for AI systems based on abstracts from scholarly papers.<n>Our analysis demonstrates that the investigated LLMs can generate user stories inspired by the needs of various stakeholders.
arXiv Detail & Related papers (2025-04-01T08:03:40Z) - User-centric evaluation of explainability of AI with and for humans: a comprehensive empirical study [5.775094401949666]
This study is located in the Human-Centered Artificial Intelligence (HCAI)
It focuses on the results of a user-centered assessment of commonly used eXplainable Artificial Intelligence (XAI) algorithms.
arXiv Detail & Related papers (2024-10-21T12:32:39Z) - Awareness and Adoption of AI Technologies in the Libraries of Karnataka [0.0]
This study employed a survey research method to evaluate the awareness and adoption of AI technologies among the respondent library professionals in Karnataka.
The study revealed that there is a statistically significant difference in the awareness and adoption of AI technologies based on the factor of gender.
There no significant relationship exists between the degree of awareness and adoption of AI technologies based on factors such as age, academic ranking, and professional experience.
arXiv Detail & Related papers (2024-07-10T09:33:10Z) - Combining AI Control Systems and Human Decision Support via Robustness and Criticality [53.10194953873209]
We extend a methodology for adversarial explanations (AE) to state-of-the-art reinforcement learning frameworks.
We show that the learned AI control system demonstrates robustness against adversarial tampering.
In a training / learning framework, this technology can improve both the AI's decisions and explanations through human interaction.
arXiv Detail & Related papers (2024-07-03T15:38:57Z) - The Ethics of Advanced AI Assistants [53.89899371095332]
This paper focuses on the opportunities and the ethical and societal risks posed by advanced AI assistants.
We define advanced AI assistants as artificial agents with natural language interfaces, whose function is to plan and execute sequences of actions on behalf of a user.
We consider the deployment of advanced assistants at a societal scale, focusing on cooperation, equity and access, misinformation, economic impact, the environment and how best to evaluate advanced AI assistants.
arXiv Detail & Related papers (2024-04-24T23:18:46Z) - Predictable Artificial Intelligence [77.1127726638209]
This paper introduces the ideas and challenges of Predictable AI.<n>It explores the ways in which we can anticipate key validity indicators of present and future AI ecosystems.<n>We argue that achieving predictability is crucial for fostering trust, liability, control, alignment and safety of AI ecosystems.
arXiv Detail & Related papers (2023-10-09T21:36:21Z) - Resilience of Deep Learning applications: a systematic literature review of analysis and hardening techniques [3.265458968159693]
The review is based on 220 scientific articles published between January 2019 and March 2024.
The authors adopt a classifying framework to interpret and highlight research similarities and peculiarities.
arXiv Detail & Related papers (2023-09-27T19:22:19Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
There is a certain consensus about the need to develop AI applications with a Human-Centric approach.
Human-Centric Machine Learning needs to be developed based on four main requirements: (i) utility and social good; (ii) privacy and data ownership; (iii) transparency and accountability; and (iv) fairness in AI-driven decision-making processes.
We study how current multimodal algorithms based on heterogeneous sources of information are affected by sensitive elements and inner biases in the data.
arXiv Detail & Related papers (2023-02-13T16:44:44Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
The benefits, challenges and drawbacks of AI in this field are reviewed.
The use of data augmentation, explainable AI, and the integration of AI with traditional experimental methods are also discussed.
arXiv Detail & Related papers (2022-12-08T23:23:39Z) - Transcending XAI Algorithm Boundaries through End-User-Inspired Design [27.864338632191608]
Lacking explainability-focused functional support for end users may hinder the safe and responsible use of AI in high-stakes domains.
Our work shows that grounding the technical problem in end users' use of XAI can inspire new research questions.
Such end-user-inspired research questions have the potential to promote social good by democratizing AI and ensuring the responsible use of AI in critical domains.
arXiv Detail & Related papers (2022-08-18T09:44:51Z) - On the Importance of Domain-specific Explanations in AI-based
Cybersecurity Systems (Technical Report) [7.316266670238795]
Lack of understanding of such decisions can be a major drawback in critical domains such as those related to cybersecurity.
In this paper we make three contributions: (i) proposal and discussion of desiderata for the explanation of outputs generated by AI-based cybersecurity systems; (ii) a comparative analysis of approaches in the literature on Explainable Artificial Intelligence (XAI) under the lens of both our desiderata and further dimensions that are typically used for examining XAI approaches; and (iii) a general architecture that can serve as a roadmap for guiding research efforts towards the development of explainable AI-based cybersecurity systems.
arXiv Detail & Related papers (2021-08-02T22:55:13Z) - Personalized Education in the AI Era: What to Expect Next? [76.37000521334585]
The objective of personalized learning is to design an effective knowledge acquisition track that matches the learner's strengths and bypasses her weaknesses to meet her desired goal.
In recent years, the boost of artificial intelligence (AI) and machine learning (ML) has unfolded novel perspectives to enhance personalized education.
arXiv Detail & Related papers (2021-01-19T12:23:32Z) - Bias in Multimodal AI: Testbed for Fair Automatic Recruitment [73.85525896663371]
We study how current multimodal algorithms based on heterogeneous sources of information are affected by sensitive elements and inner biases in the data.
We train automatic recruitment algorithms using a set of multimodal synthetic profiles consciously scored with gender and racial biases.
Our methodology and results show how to generate fairer AI-based tools in general, and in particular fairer automated recruitment systems.
arXiv Detail & Related papers (2020-04-15T15:58:05Z) - Bias in Data-driven AI Systems -- An Introductory Survey [37.34717604783343]
This survey focuses on data-driven AI, as a large part of AI is powered nowadays by (big) data and powerful Machine Learning (ML) algorithms.
If otherwise not specified, we use the general term bias to describe problems related to the gathering or processing of data that might result in prejudiced decisions on the bases of demographic features like race, sex, etc.
arXiv Detail & Related papers (2020-01-14T09:39:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.