Resilience of Deep Learning applications: a systematic literature review of analysis and hardening techniques
- URL: http://arxiv.org/abs/2309.16733v2
- Date: Thu, 30 May 2024 09:02:53 GMT
- Title: Resilience of Deep Learning applications: a systematic literature review of analysis and hardening techniques
- Authors: Cristiana Bolchini, Luca Cassano, Antonio Miele,
- Abstract summary: The review is based on 220 scientific articles published between January 2019 and March 2024.
The authors adopt a classifying framework to interpret and highlight research similarities and peculiarities.
- Score: 3.265458968159693
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Machine Learning (ML) is currently being exploited in numerous applications being one of the most effective Artificial Intelligence (AI) technologies, used in diverse fields, such as vision, autonomous systems, and alike. The trend motivated a significant amount of contributions to the analysis and design of ML applications against faults affecting the underlying hardware. The authors investigate the existing body of knowledge on Deep Learning (among ML techniques) resilience against hardware faults systematically through a thoughtful review in which the strengths and weaknesses of this literature stream are presented clearly and then future avenues of research are set out. The review is based on 220 scientific articles published between January 2019 and March 2024. The authors adopt a classifying framework to interpret and highlight research similarities and peculiarities, based on several parameters, starting from the main scope of the work, the adopted fault and error models, to their reproducibility. This framework allows for a comparison of the different solutions and the identification of possible synergies. Furthermore, suggestions concerning the future direction of research are proposed in the form of open challenges to be addressed.
Related papers
- Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
Retrieval-enhancement can be extended to a broader spectrum of machine learning (ML)
This work introduces a formal framework of this paradigm, Retrieval-Enhanced Machine Learning (REML), by synthesizing the literature in various domains in ML with consistent notations which is missing from the current literature.
The goal of this work is to equip researchers across various disciplines with a comprehensive, formally structured framework of retrieval-enhanced models, thereby fostering interdisciplinary future research.
arXiv Detail & Related papers (2024-07-17T20:01:21Z) - Ontology Embedding: A Survey of Methods, Applications and Resources [54.3453925775069]
Ontologies are widely used for representing domain knowledge and meta data.
One straightforward solution is to integrate statistical analysis and machine learning.
Numerous papers have been published on embedding, but a lack of systematic reviews hinders researchers from gaining a comprehensive understanding of this field.
arXiv Detail & Related papers (2024-06-16T14:49:19Z) - RelevAI-Reviewer: A Benchmark on AI Reviewers for Survey Paper Relevance [0.8089605035945486]
We propose RelevAI-Reviewer, an automatic system that conceptualizes the task of survey paper review as a classification problem.
We introduce a novel dataset comprised of 25,164 instances. Each instance contains one prompt and four candidate papers, each varying in relevance to the prompt.
We develop a machine learning (ML) model capable of determining the relevance of each paper and identifying the most pertinent one.
arXiv Detail & Related papers (2024-06-13T06:42:32Z) - Investigating Reproducibility in Deep Learning-Based Software Fault
Prediction [16.25827159504845]
With the rapid adoption of increasingly complex machine learning models, it becomes more and more difficult for scholars to reproduce the results that are reported in the literature.
This is in particular the case when the applied deep learning models and the evaluation methodology are not properly documented and when code and data are not shared.
We have conducted a systematic review of the current literature and examined the level of 56 research articles that were published between 2019 and 2022 in top-tier software engineering conferences.
arXiv Detail & Related papers (2024-02-08T13:00:18Z) - A Systematic Literature Review on Explainability for Machine/Deep
Learning-based Software Engineering Research [23.966640472958105]
This paper presents a systematic literature review of approaches that aim to improve the explainability of AI models within the context of Software Engineering.
We aim to summarize the SE tasks where XAI techniques have shown success to date; (2) classify and analyze different XAI techniques; and (3) investigate existing evaluation approaches.
arXiv Detail & Related papers (2024-01-26T03:20:40Z) - Machine Unlearning: A Survey [56.79152190680552]
A special need has arisen where, due to privacy, usability, and/or the right to be forgotten, information about some specific samples needs to be removed from a model, called machine unlearning.
This emerging technology has drawn significant interest from both academics and industry due to its innovation and practicality.
No study has analyzed this complex topic or compared the feasibility of existing unlearning solutions in different kinds of scenarios.
The survey concludes by highlighting some of the outstanding issues with unlearning techniques, along with some feasible directions for new research opportunities.
arXiv Detail & Related papers (2023-06-06T10:18:36Z) - Knowledge-enhanced Neural Machine Reasoning: A Review [67.51157900655207]
We introduce a novel taxonomy that categorizes existing knowledge-enhanced methods into two primary categories and four subcategories.
We elucidate the current application domains and provide insight into promising prospects for future research.
arXiv Detail & Related papers (2023-02-04T04:54:30Z) - Application of Artificial Intelligence and Machine Learning in
Libraries: A Systematic Review [0.0]
The aim of this study is to provide a synthesis of empirical studies exploring application of artificial intelligence and machine learning in libraries.
Data was collected from Web of Science, Scopus, LISA and LISTA databases.
Findings show that the current state of the AI and ML research that is relevant with the LIS domain mainly focuses on theoretical works.
arXiv Detail & Related papers (2021-12-06T07:33:09Z) - Inspect, Understand, Overcome: A Survey of Practical Methods for AI
Safety [54.478842696269304]
The use of deep neural networks (DNNs) in safety-critical applications is challenging due to numerous model-inherent shortcomings.
In recent years, a zoo of state-of-the-art techniques aiming to address these safety concerns has emerged.
Our paper addresses both machine learning experts and safety engineers.
arXiv Detail & Related papers (2021-04-29T09:54:54Z) - Individual Explanations in Machine Learning Models: A Survey for
Practitioners [69.02688684221265]
The use of sophisticated statistical models that influence decisions in domains of high societal relevance is on the rise.
Many governments, institutions, and companies are reluctant to their adoption as their output is often difficult to explain in human-interpretable ways.
Recently, the academic literature has proposed a substantial amount of methods for providing interpretable explanations to machine learning models.
arXiv Detail & Related papers (2021-04-09T01:46:34Z) - A Systematic Literature Review on the Use of Deep Learning in Software
Engineering Research [22.21817722054742]
An increasingly popular set of techniques adopted by software engineering (SE) researchers to automate development tasks are those rooted in the concept of Deep Learning (DL)
This paper presents a systematic literature review of research at the intersection of SE & DL.
We center our analysis around the components of learning, a set of principles that govern the application of machine learning techniques to a given problem domain.
arXiv Detail & Related papers (2020-09-14T15:28:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.