Near-Optimal Sample Complexity in Reward-Free Kernel-Based Reinforcement Learning
- URL: http://arxiv.org/abs/2502.07715v1
- Date: Tue, 11 Feb 2025 17:15:55 GMT
- Title: Near-Optimal Sample Complexity in Reward-Free Kernel-Based Reinforcement Learning
- Authors: Aya Kayal, Sattar Vakili, Laura Toni, Alberto Bernacchia,
- Abstract summary: We ask how many samples are required to design a near-optimal policy in kernel-based RL.
Existing work addresses this question under restrictive assumptions about the class of kernel functions.
We tackle this fundamental problem using a broad class of kernels and a simpler algorithm compared to prior work.
- Score: 17.508280208015943
- License:
- Abstract: Reinforcement Learning (RL) problems are being considered under increasingly more complex structures. While tabular and linear models have been thoroughly explored, the analytical study of RL under nonlinear function approximation, especially kernel-based models, has recently gained traction for their strong representational capacity and theoretical tractability. In this context, we examine the question of statistical efficiency in kernel-based RL within the reward-free RL framework, specifically asking: how many samples are required to design a near-optimal policy? Existing work addresses this question under restrictive assumptions about the class of kernel functions. We first explore this question by assuming a generative model, then relax this assumption at the cost of increasing the sample complexity by a factor of H, the length of the episode. We tackle this fundamental problem using a broad class of kernels and a simpler algorithm compared to prior work. Our approach derives new confidence intervals for kernel ridge regression, specific to our RL setting, which may be of broader applicability. We further validate our theoretical findings through simulations.
Related papers
- Learning Analysis of Kernel Ridgeless Regression with Asymmetric Kernel Learning [33.34053480377887]
This paper enhances kernel ridgeless regression with Locally-Adaptive-Bandwidths (LAB) RBF kernels.
For the first time, we demonstrate that functions learned from LAB RBF kernels belong to an integral space of Reproducible Kernel Hilbert Spaces (RKHSs)
arXiv Detail & Related papers (2024-06-03T15:28:12Z) - Model-Based RL for Mean-Field Games is not Statistically Harder than Single-Agent RL [57.745700271150454]
We study the sample complexity of reinforcement learning in Mean-Field Games (MFGs) with model-based function approximation.
We introduce the Partial Model-Based Eluder Dimension (P-MBED), a more effective notion to characterize the model class complexity.
arXiv Detail & Related papers (2024-02-08T14:54:47Z) - The Effective Horizon Explains Deep RL Performance in Stochastic Environments [21.148001945560075]
Reinforcement learning (RL) theory has largely focused on proving mini complexity sample bounds.
We introduce a new RL algorithm, SQIRL, that iteratively learns a nearoptimal policy by exploring randomly to collect rollouts.
We leverage SQIRL to derive instance-dependent sample complexity bounds for RL that are exponential only in an "effective horizon" look-ahead and on the complexity of the class used for approximation.
arXiv Detail & Related papers (2023-12-13T18:58:56Z) - Optimal Multi-Distribution Learning [88.3008613028333]
Multi-distribution learning seeks to learn a shared model that minimizes the worst-case risk across $k$ distinct data distributions.
We propose a novel algorithm that yields an varepsilon-optimal randomized hypothesis with a sample complexity on the order of (d+k)/varepsilon2.
arXiv Detail & Related papers (2023-12-08T16:06:29Z) - Sample Complexity of Kernel-Based Q-Learning [11.32718794195643]
We propose a non-parametric Q-learning algorithm which finds an $epsilon$-optimal policy in an arbitrarily large scale discounted MDP.
To the best of our knowledge, this is the first result showing a finite sample complexity under such a general model.
arXiv Detail & Related papers (2023-02-01T19:46:25Z) - The Eigenlearning Framework: A Conservation Law Perspective on Kernel
Regression and Wide Neural Networks [1.6519302768772166]
We derive simple closed-form estimates for the test risk and other generalization metrics of kernel ridge regression.
We identify a sharp conservation law which limits the ability of KRR to learn any orthonormal basis of functions.
arXiv Detail & Related papers (2021-10-08T06:32:07Z) - Sample-Efficient Reinforcement Learning Is Feasible for Linearly
Realizable MDPs with Limited Revisiting [60.98700344526674]
Low-complexity models such as linear function representation play a pivotal role in enabling sample-efficient reinforcement learning.
In this paper, we investigate a new sampling protocol, which draws samples in an online/exploratory fashion but allows one to backtrack and revisit previous states in a controlled and infrequent manner.
We develop an algorithm tailored to this setting, achieving a sample complexity that scales practicallyly with the feature dimension, the horizon, and the inverse sub-optimality gap, but not the size of the state/action space.
arXiv Detail & Related papers (2021-05-17T17:22:07Z) - Bilinear Classes: A Structural Framework for Provable Generalization in
RL [119.42509700822484]
Bilinear Classes is a new structural framework which permits generalization in reinforcement learning.
The framework incorporates nearly all existing models in which a sample complexity is achievable.
Our main result provides an RL algorithm which has sample complexity for Bilinear Classes.
arXiv Detail & Related papers (2021-03-19T16:34:20Z) - On Function Approximation in Reinforcement Learning: Optimism in the
Face of Large State Spaces [208.67848059021915]
We study the exploration-exploitation tradeoff at the core of reinforcement learning.
In particular, we prove that the complexity of the function class $mathcalF$ characterizes the complexity of the function.
Our regret bounds are independent of the number of episodes.
arXiv Detail & Related papers (2020-11-09T18:32:22Z) - Kernel and Rich Regimes in Overparametrized Models [69.40899443842443]
We show that gradient descent on overparametrized multilayer networks can induce rich implicit biases that are not RKHS norms.
We also demonstrate this transition empirically for more complex matrix factorization models and multilayer non-linear networks.
arXiv Detail & Related papers (2020-02-20T15:43:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.