Quantum Powered Credit Risk Assessment: A Novel Approach using hybrid Quantum-Classical Deep Neural Network for Row-Type Dependent Predictive Analysis
- URL: http://arxiv.org/abs/2502.07806v1
- Date: Thu, 06 Feb 2025 10:57:18 GMT
- Title: Quantum Powered Credit Risk Assessment: A Novel Approach using hybrid Quantum-Classical Deep Neural Network for Row-Type Dependent Predictive Analysis
- Authors: Rath Minati, Date Hema,
- Abstract summary: This study introduces a framework for credit risk assessment in the banking sector, combining quantum deep learning techniques with adaptive modeling for Row-Type Dependent Predictive Analysis (RTDPA)
The proposed approach tailors predictive models to different loan categories, aiming to enhance the accuracy and efficiency of credit risk evaluation.
- Score: 0.0
- License:
- Abstract: The integration of Quantum Deep Learning (QDL) techniques into the landscape of financial risk analysis presents a promising avenue for innovation. This study introduces a framework for credit risk assessment in the banking sector, combining quantum deep learning techniques with adaptive modeling for Row-Type Dependent Predictive Analysis (RTDPA). By leveraging RTDPA, the proposed approach tailors predictive models to different loan categories, aiming to enhance the accuracy and efficiency of credit risk evaluation. While this work explores the potential of integrating quantum methods with classical deep learning for risk assessment, it focuses on the feasibility and performance of this hybrid framework rather than claiming transformative industry-wide impacts. The findings offer insights into how quantum techniques can complement traditional financial analysis, paving the way for further advancements in predictive modeling for credit risk.
Related papers
- Risk-Averse Certification of Bayesian Neural Networks [70.44969603471903]
We propose a Risk-Averse Certification framework for Bayesian neural networks called RAC-BNN.
Our method leverages sampling and optimisation to compute a sound approximation of the output set of a BNN.
We validate RAC-BNN on a range of regression and classification benchmarks and compare its performance with a state-of-the-art method.
arXiv Detail & Related papers (2024-11-29T14:22:51Z) - Research on Credit Risk Early Warning Model of Commercial Banks Based on Neural Network Algorithm [12.315852697312195]
This study harnesses advanced neural network techniques, notably the Backpropagation (BP) neural network, to pioneer a novel model for preempting credit risk in commercial banks.
Research findings evinced that this model efficaciously enhances the foresight and precision of credit risk management.
arXiv Detail & Related papers (2024-05-17T13:18:46Z) - A machine learning workflow to address credit default prediction [0.44943951389724796]
Credit default prediction (CDP) plays a crucial role in assessing the creditworthiness of individuals and businesses.
We propose a workflow-based approach to improve CDP, which refers to the task of assessing the probability that a borrower will default on his or her credit obligations.
arXiv Detail & Related papers (2024-03-06T15:30:41Z) - A Bayesian Approach to Robust Inverse Reinforcement Learning [54.24816623644148]
We consider a Bayesian approach to offline model-based inverse reinforcement learning (IRL)
The proposed framework differs from existing offline model-based IRL approaches by performing simultaneous estimation of the expert's reward function and subjective model of environment dynamics.
Our analysis reveals a novel insight that the estimated policy exhibits robust performance when the expert is believed to have a highly accurate model of the environment.
arXiv Detail & Related papers (2023-09-15T17:37:09Z) - Capsa: A Unified Framework for Quantifying Risk in Deep Neural Networks [142.67349734180445]
Existing algorithms that provide risk-awareness to deep neural networks are complex and ad-hoc.
Here we present capsa, a framework for extending models with risk-awareness.
arXiv Detail & Related papers (2023-08-01T02:07:47Z) - Towards practical Quantum Credit Risk Analysis [0.5735035463793008]
CRA (Credit Risk Analysis) quantum algorithm with a quadratic speedup has been introduced.
We propose a new variant of this quantum algorithm with the intent of overcoming some of the most significant limitations.
arXiv Detail & Related papers (2022-12-14T09:25:30Z) - Quantum advantage for multi-option portfolio pricing and valuation
adjustments [0.0]
We study the problem of Credit Valuation Adjustments (CVAs) which have significant importance in the valuation of derivative portfolios.
We propose quantum algorithms that accelerate statistical sampling processes to approximate the CVA under different measures of dispersion.
arXiv Detail & Related papers (2022-03-09T18:14:54Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - A Multi-criteria Approach to Evolve Sparse Neural Architectures for
Stock Market Forecasting [0.0]
This study proposes a new framework to evolve efficacious yet parsimonious neural architectures for the movement prediction of stock market indices.
A new search paradigm, Two-Dimensional Swarms (2DS) is proposed for the multi-criteria neural architecture search.
The results of this study convincingly demonstrate that the proposed approach can evolve parsimonious networks with better generalization capabilities.
arXiv Detail & Related papers (2021-11-15T19:44:10Z) - Unifying Gradient Estimators for Meta-Reinforcement Learning via
Off-Policy Evaluation [53.83642844626703]
We provide a unifying framework for estimating higher-order derivatives of value functions, based on off-policy evaluation.
Our framework interprets a number of prior approaches as special cases and elucidates the bias and variance trade-off of Hessian estimates.
arXiv Detail & Related papers (2021-06-24T15:58:01Z) - Federated Learning with Unreliable Clients: Performance Analysis and
Mechanism Design [76.29738151117583]
Federated Learning (FL) has become a promising tool for training effective machine learning models among distributed clients.
However, low quality models could be uploaded to the aggregator server by unreliable clients, leading to a degradation or even a collapse of training.
We model these unreliable behaviors of clients and propose a defensive mechanism to mitigate such a security risk.
arXiv Detail & Related papers (2021-05-10T08:02:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.