Advancing Precision Oncology Through Modeling of Longitudinal and Multimodal Data
- URL: http://arxiv.org/abs/2502.07836v1
- Date: Tue, 11 Feb 2025 01:44:51 GMT
- Title: Advancing Precision Oncology Through Modeling of Longitudinal and Multimodal Data
- Authors: Luoting Zhuang, Stephen H. Park, Steven J. Skates, Ashley E. Prosper, Denise R. Aberle, William Hsu,
- Abstract summary: Cancer evolves continuously over time through a complex interplay of genetic, epigenetic, microenvironmental, and phenotypic changes.
Today's data-driven research in oncology has primarily focused on cross-sectional analysis using data from a single modality.
Advances in multiscale data collection and computational methods now enable the discovery of longitudinal multimodal biomarkers for precision oncology.
- Score: 1.6163129903911508
- License:
- Abstract: Cancer evolves continuously over time through a complex interplay of genetic, epigenetic, microenvironmental, and phenotypic changes. This dynamic behavior drives uncontrolled cell growth, metastasis, immune evasion, and therapy resistance, posing challenges for effective monitoring and treatment. However, today's data-driven research in oncology has primarily focused on cross-sectional analysis using data from a single modality, limiting the ability to fully characterize and interpret the disease's dynamic heterogeneity. Advances in multiscale data collection and computational methods now enable the discovery of longitudinal multimodal biomarkers for precision oncology. Longitudinal data reveal patterns of disease progression and treatment response that are not evident from single-timepoint data, enabling timely abnormality detection and dynamic treatment adaptation. Multimodal data integration offers complementary information from diverse sources for more precise risk assessment and targeting of cancer therapy. In this review, we survey methods of longitudinal and multimodal modeling, highlighting their synergy in providing multifaceted insights for personalized care tailored to the unique characteristics of a patient's cancer. We summarize the current challenges and future directions of longitudinal multimodal analysis in advancing precision oncology.
Related papers
- Continually Evolved Multimodal Foundation Models for Cancer Prognosis [50.43145292874533]
Cancer prognosis is a critical task that involves predicting patient outcomes and survival rates.
Previous studies have integrated diverse data modalities, such as clinical notes, medical images, and genomic data, leveraging their complementary information.
Existing approaches face two major limitations. First, they struggle to incorporate newly arrived data with varying distributions into training, such as patient records from different hospitals.
Second, most multimodal integration methods rely on simplistic concatenation or task-specific pipelines, which fail to capture the complex interdependencies across modalities.
arXiv Detail & Related papers (2025-01-30T06:49:57Z) - Multimodal Data Integration for Precision Oncology: Challenges and Future Directions [10.817613081663007]
The essence of precision oncology lies in its commitment to tailor targeted treatments and care measures to each patient based on the individual characteristics of the tumor.
Over the past decade, multimodal data integration technology for precision oncology has made significant strides.
We provide a comprehensive overview of about 300 papers detailing cutting-edge multimodal data integration techniques in precision oncology.
arXiv Detail & Related papers (2024-06-28T02:35:05Z) - Unlocking the Power of Multi-institutional Data: Integrating and Harmonizing Genomic Data Across Institutions [3.5489676012585236]
We introduce the Bridge model to derive integrated features to preserve information beyond common genes.
The model consistently excels in predicting patient survival across six cancer types in GENIE BPC data.
arXiv Detail & Related papers (2024-01-30T23:25:05Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
We propose a new incomplete multimodal data integration approach that employs transformers and generative adversarial networks.
We apply our new method to predict cognitive degeneration and disease outcomes using the multimodal imaging genetic data from Alzheimer's Disease Neuroimaging Initiative cohort.
arXiv Detail & Related papers (2023-05-25T16:29:16Z) - Multimodal Data Integration for Oncology in the Era of Deep Neural Networks: A Review [0.0]
Integrating diverse data types can improve the accuracy and reliability of cancer diagnosis and treatment.
Deep neural networks have facilitated the development of sophisticated multimodal data fusion approaches.
Recent deep learning frameworks such as Graph Neural Networks (GNNs) and Transformers have shown remarkable success in multimodal learning.
arXiv Detail & Related papers (2023-03-11T17:52:03Z) - Deep Biological Pathway Informed Pathology-Genomic Multimodal Survival
Prediction [7.133948707208067]
We propose PONET- a novel biological pathway-informed pathology-genomic deep model.
Our proposed method achieves superior predictive performance and reveals meaningful biological interpretations.
arXiv Detail & Related papers (2023-01-06T05:24:41Z) - Deep learning methods for drug response prediction in cancer:
predominant and emerging trends [50.281853616905416]
Exploiting computational predictive models to study and treat cancer holds great promise in improving drug development and personalized design of treatment plans.
A wave of recent papers demonstrates promising results in predicting cancer response to drug treatments while utilizing deep learning methods.
This review allows to better understand the current state of the field and identify major challenges and promising solution paths.
arXiv Detail & Related papers (2022-11-18T03:26:31Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
This paper aims at a unified deep learning approach to predict patient prognosis and therapy response.
We formalize the prognosis modeling as a multi-modal asynchronous time series classification task.
Our predictive model could further stratify low-risk and high-risk patients in terms of long-term survival.
arXiv Detail & Related papers (2020-10-08T15:30:17Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Trajectories, bifurcations and pseudotime in large clinical datasets:
applications to myocardial infarction and diabetes data [94.37521840642141]
We suggest a semi-supervised methodology for the analysis of large clinical datasets, characterized by mixed data types and missing values.
The methodology is based on application of elastic principal graphs which can address simultaneously the tasks of dimensionality reduction, data visualization, clustering, feature selection and quantifying the geodesic distances (pseudotime) in partially ordered sequences of observations.
arXiv Detail & Related papers (2020-07-07T21:04:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.