論文の概要: MRS: A Fast Sampler for Mean Reverting Diffusion based on ODE and SDE Solvers
- arxiv url: http://arxiv.org/abs/2502.07856v3
- Date: Wed, 19 Feb 2025 05:22:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-20 13:57:33.999811
- Title: MRS: A Fast Sampler for Mean Reverting Diffusion based on ODE and SDE Solvers
- Title(参考訳): MRS:ODEとSDEの解を用いた平均逆拡散の高速サンプリング
- Authors: Ao Li, Wei Fang, Hongbo Zhao, Le Lu, Ge Yang, Minfeng Xu,
- Abstract要約: 平均回帰(MR)拡散は微分方程式(SDE)の構造を直接修飾する
現在のトレーニングフリーの高速サンプリング器はMR拡散には直接適用されない。
MR拡散のサンプリングNFEを削減するため, MRS (MR Sampler) という新しいアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 12.639167101005695
- License:
- Abstract: In applications of diffusion models, controllable generation is of practical significance, but is also challenging. Current methods for controllable generation primarily focus on modifying the score function of diffusion models, while Mean Reverting (MR) Diffusion directly modifies the structure of the stochastic differential equation (SDE), making the incorporation of image conditions simpler and more natural. However, current training-free fast samplers are not directly applicable to MR Diffusion. And thus MR Diffusion requires hundreds of NFEs (number of function evaluations) to obtain high-quality samples. In this paper, we propose a new algorithm named MRS (MR Sampler) to reduce the sampling NFEs of MR Diffusion. We solve the reverse-time SDE and the probability flow ordinary differential equation (PF-ODE) associated with MR Diffusion, and derive semi-analytical solutions. The solutions consist of an analytical function and an integral parameterized by a neural network. Based on this solution, we can generate high-quality samples in fewer steps. Our approach does not require training and supports all mainstream parameterizations, including noise prediction, data prediction and velocity prediction. Extensive experiments demonstrate that MR Sampler maintains high sampling quality with a speedup of 10 to 20 times across ten different image restoration tasks. Our algorithm accelerates the sampling procedure of MR Diffusion, making it more practical in controllable generation.
- Abstract(参考訳): 拡散モデルの適用においては、制御可能な生成は実用上重要であるが、同時に困難である。
現在の制御可能な生成法は主に拡散モデルのスコア関数の修正に重点を置いているが、平均回帰(MR)拡散は確率微分方程式(SDE)の構造を直接修正することで、画像条件の組み入れがより簡単で自然なものになる。
しかし、現在のトレーニングフリーの高速サンプリング器はMR拡散には直接適用できない。
したがって、MR拡散は高品質なサンプルを得るために数百のNFE(関数評価数)を必要とする。
本稿では,MR拡散のサンプリングNFEを削減するため,MSS (MR Sampler) という新しいアルゴリズムを提案する。
MR拡散に伴う逆時間SDEと確率フロー常微分方程式(PF-ODE)を解き、半解析解を導出する。
解は解析関数とニューラルネットワークによってパラメータ化された積分からなる。
この解に基づいて、より少ないステップで高品質なサンプルを生成することができる。
提案手法では,ノイズ予測,データ予測,速度予測など,主流パラメータの学習は不要である。
MRサープラーは10種類の画像復元タスクで10倍から20倍の速度でサンプリング品質を維持している。
我々のアルゴリズムはMR拡散のサンプリング手順を高速化し、制御可能な生成をより実用的なものにする。
関連論文リスト
- Diffusion Rejection Sampling [13.945372555871414]
Diffusion Rejection Sampling (DiffRS) は、サンプリングされたトランジションカーネルを各タイムステップで真のカーネルと整列するリジェクションサンプリングスキームである。
提案手法は, 各中間段階における試料の品質を評価し, 試料に応じて異なる作業で精製する機構とみなすことができる。
実験により,ベンチマークデータセット上でのDiffRSの最先端性能と高速拡散サンプリングおよび大規模テキスト・画像拡散モデルに対するDiffRSの有効性を実証した。
論文 参考訳(メタデータ) (2024-05-28T07:00:28Z) - Accelerating Parallel Sampling of Diffusion Models [25.347710690711562]
自己回帰過程を並列化することにより拡散モデルのサンプリングを高速化する新しい手法を提案する。
これらの手法を適用したParaTAAは、普遍的でトレーニング不要な並列サンプリングアルゴリズムである。
実験により、ParaTAAは一般的なシーケンシャルサンプリングアルゴリズムで要求される推論ステップを4$sim$14倍に削減できることを示した。
論文 参考訳(メタデータ) (2024-02-15T14:27:58Z) - Gaussian Mixture Solvers for Diffusion Models [84.83349474361204]
本稿では,拡散モデルのためのGMSと呼ばれる,SDEに基づく新しい解法について紹介する。
画像生成およびストロークベース合成におけるサンプル品質の観点から,SDEに基づく多くの解法よりも優れる。
論文 参考訳(メタデータ) (2023-11-02T02:05:38Z) - SMRD: SURE-based Robust MRI Reconstruction with Diffusion Models [76.43625653814911]
拡散モデルは、高い試料品質のため、MRIの再生を加速するために人気を博している。
推論時に柔軟にフォワードモデルを組み込んだまま、効果的にリッチなデータプリエントとして機能することができる。
拡散モデル(SMRD)を用いたSUREに基づくMRI再構成を導入し,テスト時の堅牢性を向上する。
論文 参考訳(メタデータ) (2023-10-03T05:05:35Z) - Fast Diffusion Model [122.36693015093041]
拡散モデル(DM)は、複雑なデータ分布を捉える能力を持つ様々な分野に採用されている。
本稿では,DM最適化の観点から,高速拡散モデル (FDM) を提案する。
論文 参考訳(メタデータ) (2023-06-12T09:38:04Z) - Solving Diffusion ODEs with Optimal Boundary Conditions for Better Image Super-Resolution [82.50210340928173]
拡散モデルのランダム性は非効率性と不安定性をもたらすため、SR結果の品質を保証することは困難である。
本稿では,一連の拡散型SR手法の恩恵を受ける可能性を持つプラグアンドプレイサンプリング手法を提案する。
提案手法によりサンプリングされたSR結果の質は, 学習前の拡散ベースSRモデルと同一のランダム性を有する現在の手法でサンプリングされた結果の質より優れる。
論文 参考訳(メタデータ) (2023-05-24T17:09:54Z) - Fast Sampling of Diffusion Models via Operator Learning [74.37531458470086]
我々は,拡散モデルのサンプリング過程を高速化するために,確率フロー微分方程式の効率的な解法であるニューラル演算子を用いる。
シーケンシャルな性質を持つ他の高速サンプリング手法と比較して、並列復号法を最初に提案する。
本稿では,CIFAR-10では3.78、ImageNet-64では7.83の最先端FIDを1モデル評価環境で達成することを示す。
論文 参考訳(メタデータ) (2022-11-24T07:30:27Z) - DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling
in Around 10 Steps [45.612477740555406]
拡散確率モデル(DPM)は、新たな強力な生成モデルである。
DPM-rは離散時間と連続時間の両方に適しており、それ以上の訓練は行わない。
CIFAR10データセットを用いた関数評価では,10の関数評価で4.70 FID,20の関数評価で2.87 FIDを実現している。
論文 参考訳(メタデータ) (2022-06-02T08:43:16Z) - Pseudo Numerical Methods for Diffusion Models on Manifolds [77.40343577960712]
Denoising Diffusion Probabilistic Models (DDPM) は、画像やオーディオサンプルなどの高品質なサンプルを生成することができる。
DDPMは最終的なサンプルを生成するために数百から数千のイテレーションを必要とする。
拡散モデル(PNDM)の擬似数値法を提案する。
PNDMは、1000段DDIM(20倍の高速化)と比較して、50段の精度で高品質な合成画像を生成することができる
論文 参考訳(メタデータ) (2022-02-20T10:37:52Z) - Come-Closer-Diffuse-Faster: Accelerating Conditional Diffusion Models
for Inverse Problems through Stochastic Contraction [31.61199061999173]
拡散モデルには重要な欠点がある。純粋なガウスノイズから画像を生成するために数千ステップの反復を必要とするため、サンプリングが本質的に遅い。
ガウスノイズから始めることは不要であることを示す。代わりに、より優れた初期化を伴う単一前方拡散から始めると、逆条件拡散におけるサンプリングステップの数を大幅に減少させる。
ComeCloser-DiffuseFaster (CCDF)と呼ばれる新しいサンプリング戦略は、逆問題に対する既存のフィードフォワードニューラルネットワークアプローチが拡散モデルと相乗的に組み合わせられる方法について、新たな洞察を明らかにしている。
論文 参考訳(メタデータ) (2021-12-09T04:28:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。