論文の概要: DeepSeek on a Trip: Inducing Targeted Visual Hallucinations via Representation Vulnerabilities
- arxiv url: http://arxiv.org/abs/2502.07905v1
- Date: Tue, 11 Feb 2025 19:21:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-13 13:49:29.812039
- Title: DeepSeek on a Trip: Inducing Targeted Visual Hallucinations via Representation Vulnerabilities
- Title(参考訳): DeepSeek on a Trip: Inducing Targeted Visual Hallucinations via Representation Vulnerabilities
- Authors: Chashi Mahiul Islam, Samuel Jacob Chacko, Preston Horne, Xiuwen Liu,
- Abstract要約: 我々はDeepSeek Janusに適応的な埋め込み操作攻撃を実装した。
高い視力を維持しながら、最大98.0%の幻覚率を達成する。
この研究は、MLLMデプロイメントパイプラインに埋め込みレベルのセキュリティ対策を組み込む必要性を強調している。
- 参考スコア(独自算出の注目度): 1.1187085721899017
- License:
- Abstract: Multimodal Large Language Models (MLLMs) represent the cutting edge of AI technology, with DeepSeek models emerging as a leading open-source alternative offering competitive performance to closed-source systems. While these models demonstrate remarkable capabilities, their vision-language integration mechanisms introduce specific vulnerabilities. We implement an adapted embedding manipulation attack on DeepSeek Janus that induces targeted visual hallucinations through systematic optimization of image embeddings. Through extensive experimentation across COCO, DALL-E 3, and SVIT datasets, we achieve hallucination rates of up to 98.0% while maintaining high visual fidelity (SSIM > 0.88) of the manipulated images on open-ended questions. Our analysis demonstrates that both 1B and 7B variants of DeepSeek Janus are susceptible to these attacks, with closed-form evaluation showing consistently higher hallucination rates compared to open-ended questioning. We introduce a novel multi-prompt hallucination detection framework using LLaMA-3.1 8B Instruct for robust evaluation. The implications of these findings are particularly concerning given DeepSeek's open-source nature and widespread deployment potential. This research emphasizes the critical need for embedding-level security measures in MLLM deployment pipelines and contributes to the broader discussion of responsible AI implementation.
- Abstract(参考訳): マルチモーダル大規模言語モデル(MLLM)は、AI技術の最先端を表現し、DeepSeekモデルは、クローズドソースシステムと競合するパフォーマンスを提供する主要なオープンソース代替品として登場している。
これらのモデルは優れた機能を示しているが、ビジョン言語統合メカニズムは特定の脆弱性を導入している。
我々は,DeepSeek Janusに対して,画像埋め込みの体系的最適化による視覚幻覚を誘導する埋め込み操作を適応的に実装する。
COCO, DALL-E 3 および SVIT データセットの広範な実験を通じて, 操作した画像の高視力(SSIM > 0.88)を維持しつつ, 最大98.0%の幻覚率を達成する。
分析の結果,DeepSeek Janusの1Bおよび7Bはいずれもこれらの攻撃の影響を受けやすいことが明らかとなった。
我々は,LLaMA-3.1 8Bインストラクタを用いた新しいマルチプロンプト幻覚検出フレームワークを導入し,ロバストな評価を行った。
これらの発見の意味は、DeepSeekのオープンソースの性質と広範なデプロイメントの可能性を考えると、特に関係している。
この研究は、MLLMデプロイメントパイプラインに埋め込みレベルのセキュリティ対策を組み込む必要性を強調し、責任あるAI実装に関するより広範な議論に貢献する。
関連論文リスト
- Mitigating Hallucinations in Large Vision-Language Models with Internal Fact-based Contrastive Decoding [5.424048651554831]
内部Fact-based Contrastive Decoding (IFCD)は、大規模視覚言語モデル(LVLM)の推論過程における幻覚の緩和と抑制を目的としている。
IFCDはLVLMの出力を校正し、最終予測から幻覚ロジットを効果的に除去する。
実験の結果, IFCD はPOPE では平均9% の精度向上, MME では8% の精度向上を実現し, オブジェクトレベルの幻覚と属性レベルの幻覚の両方を著しく軽減することがわかった。
論文 参考訳(メタデータ) (2025-02-03T05:08:35Z) - Mitigating Hallucination for Large Vision Language Model by Inter-Modality Correlation Calibration Decoding [66.06337890279839]
大規模視覚言語モデル(LVLM)は、下流のマルチモーダルタスクに対する視覚言語理解において顕著な能力を示している。
LVLMは、複雑な生成タスクにおいて幻覚を生じさせ、視覚入力と生成されたコンテンツの間に矛盾が生じている。
本研究では,LVLMにおける幻覚を無訓練で緩和するIMCCD法を提案する。
論文 参考訳(メタデータ) (2025-01-03T17:56:28Z) - VLFeedback: A Large-Scale AI Feedback Dataset for Large Vision-Language Models Alignment [55.7956150385255]
本稿では,視覚言語モデルの整合性向上のためのAIフィードバックの有効性について検討する。
最初の大規模視覚言語フィードバックデータセットであるVLFeedbackを紹介する。
我々は、VLFeedback上で直接選好最適化によって微調整されたLVLMであるSilkieを訓練する。
論文 参考訳(メタデータ) (2024-10-12T07:56:47Z) - Towards Analyzing and Mitigating Sycophancy in Large Vision-Language Models [22.658792167014624]
LVLM(Large Vision-Language Models)は、視覚言語理解において重要な能力を示す。
シコファンシーは、先導的または偽りのプロンプトの影響を受けず、バイアスのあるアウトプットと幻覚をもたらす。
そこで本研究では,テキストのコントラスト復号化手法を提案する。
論文 参考訳(メタデータ) (2024-08-21T01:03:21Z) - Reefknot: A Comprehensive Benchmark for Relation Hallucination Evaluation, Analysis and Mitigation in Multimodal Large Language Models [13.48296910438554]
我々は2万以上の実世界のサンプルからなる関係幻覚を対象とする総合的なベンチマークであるReefknotを紹介した。
関係幻覚を体系的に定義し、知覚的視点と認知的視点を統合するとともに、Visual Genomeのシーングラフデータセットを用いて関係ベースのコーパスを構築する。
本稿では,Reefknotを含む3つのデータセットに対して,幻覚率を平均9.75%削減する信頼性に基づく新たな緩和戦略を提案する。
論文 参考訳(メタデータ) (2024-08-18T10:07:02Z) - Hallucination of Multimodal Large Language Models: A Survey [40.73148186369018]
マルチモーダル大規模言語モデル(MLLM)は,多モーダルタスクにおいて顕著な進歩と顕著な能力を示した。
これらの有望な発展にもかかわらず、MLLMは視覚的内容と矛盾する出力をしばしば生成する。
本調査は,MLLMにおける幻覚の理解を深め,この分野のさらなる進歩を促すことを目的としている。
論文 参考訳(メタデータ) (2024-04-29T17:59:41Z) - What if...?: Thinking Counterfactual Keywords Helps to Mitigate Hallucination in Large Multi-modal Models [50.97705264224828]
大規模マルチモーダルモデルに反現実的思考を組み込む新しい手法である反現実的インセプションを提案する。
我々は、より広い文脈のシーン理解にまたがる応答をモデルが関与し、生成することを目指している。
オープンソースモデルとプロプライエタリモデルの両方を含む様々なLMMの包括的分析は、反事実的思考が幻覚を著しく減少させることを裏付ける。
論文 参考訳(メタデータ) (2024-03-20T11:27:20Z) - Debiasing Multimodal Large Language Models [61.6896704217147]
LVLM(Large Vision-Language Models)は、コンピュータビジョンや自然言語処理において欠かせないツールとなっている。
本研究は,入力画像に先行するLarge Language Models (LLM) の影響を主に受け,生成したコンテンツに有意なバイアスが生じることを示す。
これらのバイアスを是正し、視覚情報に対するモデルの焦点をリダイレクトするために、我々は2つの単純で訓練のない戦略を導入する。
論文 参考訳(メタデータ) (2024-03-08T12:35:07Z) - IBD: Alleviating Hallucinations in Large Vision-Language Models via
Image-Biased Decoding [37.16880672402059]
言語的先行性への過度な依存は幻覚に繋がる重要な要因として認識されている。
本稿では,新しい画像バイアスデコーディング手法を導入することにより,この問題を軽減することを提案する。
提案手法は,従来のLVLMと画像バイアスLVLMの予測を対比することにより,次の確率分布を導出する。
論文 参考訳(メタデータ) (2024-02-28T16:57:22Z) - Enhancing Uncertainty-Based Hallucination Detection with Stronger Focus [99.33091772494751]
大規模言語モデル(LLM)は、様々な分野にわたる印象的なパフォーマンスで大きな人気を集めている。
LLMは、ユーザの期待を満たさない非現実的あるいは非感覚的なアウトプットを幻覚させる傾向がある。
LLMにおける幻覚を検出するための新しい基準のない不確実性に基づく手法を提案する。
論文 参考訳(メタデータ) (2023-11-22T08:39:17Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
ディープフェイクは現実的な顔操作であり、セキュリティ、プライバシー、信頼に深刻な脅威をもたらす可能性がある。
既存の方法は、このタスクを、デジタルラベルまたはマスク信号を使用して検出モデルをトレーニングするバイナリ分類として扱う。
本稿では, 微粒な文レベルのプロンプトをアノテーションとして用いた, VLFFD (Visual-Linguistic Face Forgery Detection) という新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-07-31T10:22:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。