CREDAL: Close Reading of Data Models
- URL: http://arxiv.org/abs/2502.07943v1
- Date: Tue, 11 Feb 2025 20:42:56 GMT
- Title: CREDAL: Close Reading of Data Models
- Authors: George Fletcher, Olha Nahurna, Matvii Prytula, Julia Stoyanovich,
- Abstract summary: Close readings of data models reconnect us with the materiality, the genealogies, the techne, the closed nature, and the design of technical systems.
A systematic methodology for reading data models currently does not exist.
We present the CREDAL methodology for close readings of data models.
- Score: 10.426746231592361
- License:
- Abstract: Data models are necessary for the birth of data and of any data-driven system. Indeed, every algorithm, every machine learning model, every statistical model, and every database has an underlying data model without which the system would not be usable. Hence, data models are excellent sites for interrogating the (material, social, political, ...) conditions giving rise to a data system. Towards this, drawing inspiration from literary criticism, we propose to closely read data models in the same spirit as we closely read literary artifacts. Close readings of data models reconnect us with, among other things, the materiality, the genealogies, the techne, the closed nature, and the design of technical systems. While recognizing from literary theory that there is no one correct way to read, it is nonetheless critical to have systematic guidance for those unfamiliar with close readings. This is especially true for those trained in the computing and data sciences, who too often are enculturated to set aside the socio-political aspects of data work. A systematic methodology for reading data models currently does not exist. To fill this gap, we present the CREDAL methodology for close readings of data models. We detail our iterative development process and present results of a qualitative evaluation of CREDAL demonstrating its usability, usefulness, and effectiveness in the critical study of data.
Related papers
- Exploring the Landscape for Generative Sequence Models for Specialized Data Synthesis [0.0]
This paper introduces a novel approach that leverages three generative models of varying complexity to synthesize Malicious Network Traffic.
Our approach transforms numerical data into text, re-framing data generation as a language modeling task.
Our method surpasses state-of-the-art generative models in producing high-fidelity synthetic data.
arXiv Detail & Related papers (2024-11-04T09:51:10Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
Large Language Models (LLMs) are foundational to AI advancements.
LLMs pose risks by potentially memorizing and disseminating sensitive, biased, or copyrighted information.
Machine unlearning emerges as a cutting-edge solution to mitigate these concerns.
arXiv Detail & Related papers (2024-03-23T09:26:15Z) - Certain and Approximately Certain Models for Statistical Learning [4.318959672085627]
We show that it is possible to learn accurate models directly from data with missing values for certain training data and target models.
We build efficient algorithms with theoretical guarantees to check this necessity and return accurate models in cases where imputation is unnecessary.
arXiv Detail & Related papers (2024-02-27T22:49:33Z) - Learning Defect Prediction from Unrealistic Data [57.53586547895278]
Pretrained models of code have become popular choices for code understanding and generation tasks.
Such models tend to be large and require commensurate volumes of training data.
It has become popular to train models with far larger but less realistic datasets, such as functions with artificially injected bugs.
Models trained on such data tend to only perform well on similar data, while underperforming on real world programs.
arXiv Detail & Related papers (2023-11-02T01:51:43Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
Synthetic data serves as an alternative in training machine learning models.
ensuring that synthetic data mirrors the complex nuances of real-world data is a challenging task.
This paper explores the potential of integrating data-centric AI techniques to guide the synthetic data generation process.
arXiv Detail & Related papers (2023-10-25T20:32:02Z) - From Zero to Hero: Detecting Leaked Data through Synthetic Data Injection and Model Querying [10.919336198760808]
We introduce a novel methodology to detect leaked data that are used to train classification models.
textscLDSS involves injecting a small volume of synthetic data--characterized by local shifts in class distribution--into the owner's dataset.
This enables the effective identification of models trained on leaked data through model querying alone.
arXiv Detail & Related papers (2023-10-06T10:36:28Z) - AI Model Disgorgement: Methods and Choices [127.54319351058167]
We introduce a taxonomy of possible disgorgement methods that are applicable to modern machine learning systems.
We investigate the meaning of "removing the effects" of data in the trained model in a way that does not require retraining from scratch.
arXiv Detail & Related papers (2023-04-07T08:50:18Z) - Synthetic Model Combination: An Instance-wise Approach to Unsupervised
Ensemble Learning [92.89846887298852]
Consider making a prediction over new test data without any opportunity to learn from a training set of labelled data.
Give access to a set of expert models and their predictions alongside some limited information about the dataset used to train them.
arXiv Detail & Related papers (2022-10-11T10:20:31Z) - Data Excellence for AI: Why Should You Care [9.421161233914251]
Benchmark datasets define the entire world within which models exist and operate.
If "data is the new oil," we are still missing work on the refineries by which the data itself could be optimized for more effective use.
arXiv Detail & Related papers (2021-11-19T19:06:03Z) - Decentralized Federated Learning Preserves Model and Data Privacy [77.454688257702]
We propose a fully decentralized approach, which allows to share knowledge between trained models.
Students are trained on the output of their teachers via synthetically generated input data.
The results show that an untrained student model, trained on the teachers output reaches comparable F1-scores as the teacher.
arXiv Detail & Related papers (2021-02-01T14:38:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.