論文の概要: Training Sparse Mixture Of Experts Text Embedding Models
- arxiv url: http://arxiv.org/abs/2502.07972v2
- Date: Thu, 13 Feb 2025 01:23:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-14 13:50:44.956067
- Title: Training Sparse Mixture Of Experts Text Embedding Models
- Title(参考訳): テキスト埋め込みモデルによるエキスパートのスパースミックスの訓練
- Authors: Zach Nussbaum, Brandon Duderstadt,
- Abstract要約: トランスフォーマーベースのテキスト埋め込みモデルは、パラメータ数を増やすことで、MIRACLやBEIRのようなベンチマークのパフォーマンスを改善した。
このスケーリングアプローチでは、推論レイテンシやメモリ使用量の増加など、デプロイメント上の大きな課題が導入されている。
最初の汎用MoEテキスト埋め込みモデルであるNomic Embed v2を紹介する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Transformer-based text embedding models have improved their performance on benchmarks like MIRACL and BEIR by increasing their parameter counts. However, this scaling approach introduces significant deployment challenges, including increased inference latency and memory usage. These challenges are particularly severe in retrieval-augmented generation (RAG) applications, where large models' increased memory requirements constrain dataset ingestion capacity, and their higher latency directly impacts query-time performance. While causal language models have addressed similar efficiency challenges using Mixture of Experts (MoE) architectures, this approach hasn't been successfully adapted to the general text embedding setting. In this paper, we introduce Nomic Embed v2, the first general purpose MoE text embedding model. Our model outperforms models in the same parameter class on both monolingual and multilingual benchmarks while also maintaining competitive performance with models twice its size. We open-source all code, models, and evaluation data to ensure full reproducibility of our training pipeline at \href{https://github.com/nomic-ai/contrastors}{https://github.com/nomic-ai/contrastors}.
- Abstract(参考訳): トランスフォーマーベースのテキスト埋め込みモデルは、パラメータ数を増やすことで、MIRACLやBEIRのようなベンチマークのパフォーマンスを改善した。
しかしながら、このスケーリングアプローチでは、推論レイテンシやメモリ使用量の増加など、デプロイメント上の大きな課題が発生している。
これらの課題は、大規模なモデルのメモリ要求の増加がデータセットの取り込み能力を制限し、その高いレイテンシがクエリ時間パフォーマンスに直接影響する、検索強化世代(RAG)アプリケーションにおいて特に深刻である。
因果言語モデルは、Mixture of Experts (MoE)アーキテクチャを使って、同様の効率上の課題に対処してきたが、このアプローチは一般的なテキスト埋め込み設定にうまく適応していない。
本稿では,最初の汎用MoEテキスト埋め込みモデルであるNomic Embed v2を紹介する。
本モデルでは, 単言語ベンチマークと多言語ベンチマークの両方において, 同じパラメータクラスでモデルの性能を向上すると同時に, モデルのサイズを2倍に抑えながら, 競合性能を維持する。
トレーニングパイプラインの完全な再現性を保証するため、すべてのコード、モデル、評価データをオープンソースとして公開しています。
関連論文リスト
- Scalable Language Models with Posterior Inference of Latent Thought Vectors [52.63299874322121]
Latent-Thought Language Models (LTM) には、潜在空間における明示的な事前モデルに従う明示的な潜在思考ベクトルが含まれている。
LTMは従来のLLMを超える拡張次元を持ち、構造化された設計空間を提供する。
LTMは従来の自己回帰モデルや離散拡散モデルよりも、検証の難易度やゼロショット言語モデリングにおいて著しく優れている。
論文 参考訳(メタデータ) (2025-02-03T17:50:34Z) - DreamMask: Boosting Open-vocabulary Panoptic Segmentation with Synthetic Data [61.62554324594797]
オープンな語彙設定でトレーニングデータを生成する方法と、実データと合成データの両方でモデルをトレーニングする方法を探索するDreamMaskを提案する。
一般的に、DreamMaskは大規模なトレーニングデータの収集を著しく単純化し、既存のメソッドのプラグイン・アンド・プレイ・エンハンスメントとして機能する。
例えば、COCOで訓練しADE20Kで試験すると、ドリームマスクを装備したモデルは以前の最先端の2.1% mIoUよりも優れていた。
論文 参考訳(メタデータ) (2025-01-03T19:00:00Z) - KaLM-Embedding: Superior Training Data Brings A Stronger Embedding Model [27.25688303240741]
KaLM-Embeddingは、よりクリーンで、より多様な、ドメイン固有のトレーニングデータを活用する一般的な多言語埋め込みモデルである。
我々のモデルは、性能を向上させることが証明された重要な技術で訓練されている。
論文 参考訳(メタデータ) (2025-01-02T03:17:51Z) - GASE: Generatively Augmented Sentence Encoding [0.0]
本稿では,データ拡張のための生成テキストモデルを推論時に適用することにより,文の埋め込みを強化する手法を提案する。
Generatively Augmented Sentenceは、パラフレーズ、要約、あるいはキーワードの抽出によって生成される入力テキストの多様な合成変種を使用する。
生成的拡張により,ベースライン性能の低い埋め込みモデルの性能が向上することが判明した。
論文 参考訳(メタデータ) (2024-11-07T17:53:47Z) - Improving General Text Embedding Model: Tackling Task Conflict and Data Imbalance through Model Merging [33.23758947497205]
高度な埋め込みモデルは、通常、大規模マルチタスクデータと複数のタスクをまたいだ共同トレーニングを用いて開発される。
これらの課題を克服するために、独立に訓練されたモデルを組み合わせて勾配の衝突を緩和し、データ分散のバランスをとるモデルマージングについて検討する。
本稿では,勾配降下を用いたタスクベクトル空間内の最適モデル組合せを効率的に探索する新たな手法であるSelf Positioningを提案する。
論文 参考訳(メタデータ) (2024-10-19T08:39:21Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
我々は、ゼロショットスパースミクチャー(SMILE)と呼ばれるモデル融合に対する革新的なアプローチを提案する。
SMILEは、余分なデータやさらなるトレーニングなしに、ソースモデルをMoEモデルにアップスケーリングできる。
画像分類やテキスト生成タスクなど,さまざまなシナリオに対して,フル微調整とLoRA微調整を用いて広範な実験を行う。
論文 参考訳(メタデータ) (2024-08-19T17:32:15Z) - ML-SUPERB 2.0: Benchmarking Multilingual Speech Models Across Modeling Constraints, Languages, and Datasets [106.7760874400261]
本稿では、事前訓練されたSSLと教師付き音声モデルを評価するための新しいベンチマークであるML-SUPERB2.0を提案する。
ML-SUPERBのセットアップよりも性能が向上するが、性能は下流モデル設計に依存している。
また、言語とデータセットのパフォーマンスに大きな違いがあることから、よりターゲットを絞ったアプローチの必要性も示唆されている。
論文 参考訳(メタデータ) (2024-06-12T21:01:26Z) - The Languini Kitchen: Enabling Language Modelling Research at Different
Scales of Compute [66.84421705029624]
本稿では,アクセル時間で測定された等価計算に基づくモデル比較を可能にする実験的プロトコルを提案する。
私たちは、既存の学術的ベンチマークを上回り、品質、多様性、文書の長さで上回る、大規模で多様で高品質な書籍データセットを前処理します。
この研究は、GPT-2アーキテクチャから派生したフィードフォワードモデルと、10倍のスループットを持つ新しいLSTMの形式でのリカレントモデルという2つのベースラインモデルも提供する。
論文 参考訳(メタデータ) (2023-09-20T10:31:17Z) - Pluggable Neural Machine Translation Models via Memory-augmented Adapters [25.26982333390014]
プリトレーニングされたNMTモデルをプラガブルな方法でステアリングするためのメモリ拡張アダプタを提案する。
具体的には,ユーザが提供するテキストサンプルに基づいて,多粒性メモリを構築する。
また,NMTモデルとメモリ間の素早い依存関係を低減するため,メモリドロップアウトを用いたトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2023-07-12T09:23:41Z) - Extensive Evaluation of Transformer-based Architectures for Adverse Drug
Events Extraction [6.78974856327994]
逆イベント(ADE)抽出は、デジタル製薬における中核的なタスクの1つである。
我々は、非公式テキストを用いたADE抽出のための19のトランスフォーマーモデルを評価する。
分析の最後には、実験データから導出可能なテイクホームメッセージのリストを同定する。
論文 参考訳(メタデータ) (2023-06-08T15:25:24Z) - Virtual Data Augmentation: A Robust and General Framework for
Fine-tuning Pre-trained Models [51.46732511844122]
強力な事前訓練型言語モデル(PLM)は、小さな摂動や意図的な攻撃によって騙されることがある。
VDA(Virtual Data Augmentation)は,PLMを高度に微調整するための一般的なフレームワークである。
本手法は, PLMの堅牢性を向上し, 敵攻撃時の性能劣化を軽減する。
論文 参考訳(メタデータ) (2021-09-13T09:15:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。