論文の概要: Deep Semantic Graph Learning via LLM based Node Enhancement
- arxiv url: http://arxiv.org/abs/2502.07982v1
- Date: Tue, 11 Feb 2025 21:55:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-13 13:48:33.512059
- Title: Deep Semantic Graph Learning via LLM based Node Enhancement
- Title(参考訳): LLMに基づくノード拡張によるディープセマンティックグラフ学習
- Authors: Chuanqi Shi, Yiyi Tao, Hang Zhang, Lun Wang, Shaoshuai Du, Yixian Shen, Yanxin Shen,
- Abstract要約: 大規模言語モデル(LLM)は、テキストセマンティクスを理解する上で優れた能力を示している。
本稿では,グラフトランスフォーマーアーキテクチャとLLM拡張ノード機能を組み合わせた新しいフレームワークを提案する。
- 参考スコア(独自算出の注目度): 5.312946761836463
- License:
- Abstract: Graph learning has attracted significant attention due to its widespread real-world applications. Current mainstream approaches rely on text node features and obtain initial node embeddings through shallow embedding learning using GNNs, which shows limitations in capturing deep textual semantics. Recent advances in Large Language Models (LLMs) have demonstrated superior capabilities in understanding text semantics, transforming traditional text feature processing. This paper proposes a novel framework that combines Graph Transformer architecture with LLM-enhanced node features. Specifically, we leverage LLMs to generate rich semantic representations of text nodes, which are then processed by a multi-head self-attention mechanism in the Graph Transformer to capture both local and global graph structural information. Our model utilizes the Transformer's attention mechanism to dynamically aggregate neighborhood information while preserving the semantic richness provided by LLM embeddings. Experimental results demonstrate that the LLM-enhanced node features significantly improve the performance of graph learning models on node classification tasks. This approach shows promising results across multiple graph learning tasks, offering a practical direction for combining graph networks with language models.
- Abstract(参考訳): グラフ学習は、現実世界に広く応用されているため、大きな注目を集めている。
現在の主流のアプローチは、テキストノードの機能に依存し、GNNを用いた浅い埋め込み学習を通じて初期ノードの埋め込みを得る。
近年のLarge Language Models (LLM) の進歩は、テキスト意味論の理解において優れた能力を示し、従来のテキスト特徴処理を変換している。
本稿では,グラフトランスフォーマーアーキテクチャとLLM拡張ノード機能を組み合わせた新しいフレームワークを提案する。
具体的には、LLMを利用してテキストノードのリッチなセマンティック表現を生成し、グラフ変換器のマルチヘッド自己アテンション機構によって処理し、局所グラフ構造情報とグローバルグラフ構造情報の両方をキャプチャする。
我々のモデルはトランスフォーマーのアテンション機構を利用して、LCM埋め込みによって提供される意味豊かさを保ちながら、近隣情報を動的に集約する。
実験結果から,LLM強化ノードはノード分類タスクにおけるグラフ学習モデルの性能を大幅に向上することが示された。
このアプローチは、複数のグラフ学習タスクにまたがって有望な結果を示し、グラフネットワークと言語モデルを組み合わせるための実践的な方向を提供する。
関連論文リスト
- Graph Learning in the Era of LLMs: A Survey from the Perspective of Data, Models, and Tasks [25.720233631885726]
グラフニューラルネットワーク(GNN)とLarge Language Models(LLM)の統合は、有望な技術パラダイムとして現れている。
データ品質を根本的に向上させるために、リッチなセマンティックコンテキストを持つグラフ記述テキストを活用します。
この研究は、グラフ学習方法論の進歩を目指す研究者や実践者にとって、基礎的な参考となる。
論文 参考訳(メタデータ) (2024-12-17T01:41:17Z) - NT-LLM: A Novel Node Tokenizer for Integrating Graph Structure into Large Language Models [26.739650151993928]
グラフは、現実世界のシナリオにおける関係を表現するための基本的なデータ構造である。
グラフ関連のタスクにLLM(Large Language Models)を適用することは、大きな課題となる。
我々は,グラフ構造を効率的にエンコードする新しいフレームワークNT-LLM(Node Tokenizer for Large Language Models)を紹介する。
論文 参考訳(メタデータ) (2024-10-14T17:21:57Z) - All Against Some: Efficient Integration of Large Language Models for Message Passing in Graph Neural Networks [51.19110891434727]
事前訓練された知識と強力なセマンティック理解能力を持つ大規模言語モデル(LLM)は、最近、視覚とテキストデータを使用してアプリケーションに恩恵をもたらす顕著な能力を示している。
E-LLaGNNは、グラフから限られたノード数を増やして、グラフ学習のメッセージパッシング手順を強化するオンデマンドLLMサービスを備えたフレームワークである。
論文 参考訳(メタデータ) (2024-07-20T22:09:42Z) - A Pure Transformer Pretraining Framework on Text-attributed Graphs [50.833130854272774]
グラフ構造を先行として扱うことで,特徴中心の事前学習の視点を導入する。
我々のフレームワークであるGraph Sequence Pretraining with Transformer (GSPT)はランダムウォークを通してノードコンテキストをサンプリングする。
GSPTはノード分類とリンク予測の両方に容易に適応でき、様々なデータセットで有望な経験的成功を示す。
論文 参考訳(メタデータ) (2024-06-19T22:30:08Z) - Multi-View Empowered Structural Graph Wordification for Language Models [12.22063024099311]
本稿では,LLM-graphアライメントのためのエンドツーエンドのモダリティアライメントフレームワークについて紹介する。
提案手法は LLM とのトークンレベルアライメントを容易にするために設計されており,グラフの内在的' を理解可能な自然言語に効果的に翻訳することができる。
我々のフレームワークは、LLMとGNN間のトークンレベルのアライメントを実現するための、有望な試みである、ある視覚的解釈可能性、効率、堅牢性を保証する。
論文 参考訳(メタデータ) (2024-06-19T16:43:56Z) - Parameter-Efficient Tuning Large Language Models for Graph Representation Learning [62.26278815157628]
Graph-awareを導入します。
GPEFT - グラフ表現学習のための新しい手法。
グラフニューラルネットワーク(GNN)を用いて、隣接するノードからグラフプロンプトに構造情報をエンコードする。
我々は8つの異なるテキストリッチグラフで実施した総合的な実験を通じて,リンク予測評価において hit@1 と Mean Reciprocal Rank (MRR) の平均 2% の改善を観察し,本手法の有効性を検証した。
論文 参考訳(メタデータ) (2024-04-28T18:36:59Z) - Exploring the Potential of Large Language Models (LLMs) in Learning on
Graphs [59.74814230246034]
大規模言語モデル(LLM)は、広範な共通知識と強力な意味理解能力を持つことが証明されている。
LLMs-as-EnhancersとLLMs-as-Predictorsの2つのパイプラインについて検討する。
論文 参考訳(メタデータ) (2023-07-07T05:31:31Z) - Harnessing Explanations: LLM-to-LM Interpreter for Enhanced
Text-Attributed Graph Representation Learning [51.90524745663737]
重要なイノベーションは、機能として説明を使用することで、下流タスクにおけるGNNのパフォーマンス向上に利用できます。
提案手法は、確立されたTAGデータセットの最先端結果を実現する。
本手法はトレーニングを著しく高速化し,ogbn-arxivのベースラインに最も近い2.88倍の改善を実現した。
論文 参考訳(メタデータ) (2023-05-31T03:18:03Z) - GraphFormers: GNN-nested Transformers for Representation Learning on
Textual Graph [53.70520466556453]
階層的にGNNコンポーネントを言語モデルのトランスフォーマーブロックと一緒にネストするGraphFormerを提案する。
提案したアーキテクチャでは、テキストエンコーディングとグラフ集約を反復的なワークフローに融合する。
さらに、プログレッシブ・ラーニング・ストラテジーを導入し、そのモデルが操作されたデータと元のデータに基づいて連続的に訓練され、グラフ上の情報を統合する能力を強化する。
論文 参考訳(メタデータ) (2021-05-06T12:20:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。