論文の概要: Graph Learning in the Era of LLMs: A Survey from the Perspective of Data, Models, and Tasks
- arxiv url: http://arxiv.org/abs/2412.12456v1
- Date: Tue, 17 Dec 2024 01:41:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-18 14:02:17.303658
- Title: Graph Learning in the Era of LLMs: A Survey from the Perspective of Data, Models, and Tasks
- Title(参考訳): LLM時代のグラフ学習:データ・モデル・課題の視点から
- Authors: Xunkai Li, Zhengyu Wu, Jiayi Wu, Hanwen Cui, Jishuo Jia, Rong-Hua Li, Guoren Wang,
- Abstract要約: グラフニューラルネットワーク(GNN)とLarge Language Models(LLM)の統合は、有望な技術パラダイムとして現れている。
データ品質を根本的に向上させるために、リッチなセマンティックコンテキストを持つグラフ記述テキストを活用します。
この研究は、グラフ学習方法論の進歩を目指す研究者や実践者にとって、基礎的な参考となる。
- 参考スコア(独自算出の注目度): 25.720233631885726
- License:
- Abstract: With the increasing prevalence of cross-domain Text-Attributed Graph (TAG) Data (e.g., citation networks, recommendation systems, social networks, and ai4science), the integration of Graph Neural Networks (GNNs) and Large Language Models (LLMs) into a unified Model architecture (e.g., LLM as enhancer, LLM as collaborators, LLM as predictor) has emerged as a promising technological paradigm. The core of this new graph learning paradigm lies in the synergistic combination of GNNs' ability to capture complex structural relationships and LLMs' proficiency in understanding informative contexts from the rich textual descriptions of graphs. Therefore, we can leverage graph description texts with rich semantic context to fundamentally enhance Data quality, thereby improving the representational capacity of model-centric approaches in line with data-centric machine learning principles. By leveraging the strengths of these distinct neural network architectures, this integrated approach addresses a wide range of TAG-based Task (e.g., graph learning, graph reasoning, and graph question answering), particularly in complex industrial scenarios (e.g., supervised, few-shot, and zero-shot settings). In other words, we can treat text as a medium to enable cross-domain generalization of graph learning Model, allowing a single graph model to effectively handle the diversity of downstream graph-based Task across different data domains. This work serves as a foundational reference for researchers and practitioners looking to advance graph learning methodologies in the rapidly evolving landscape of LLM. We consistently maintain the related open-source materials at \url{https://github.com/xkLi-Allen/Awesome-GNN-in-LLMs-Papers}.
- Abstract(参考訳): クロスドメインテキスト分散グラフ(TAG)データ(例えば、引用ネットワーク、レコメンデーションシステム、ソーシャルネットワーク、ai4science)の普及に伴い、グラフニューラルネットワーク(GNN)とLarge Language Models(LLM)が統合されたモデルアーキテクチャ(例えば、エンハンサーとしてのLLM、コラボレーターとしてのLLM、予測者としてのLLM)への統合が有望な技術パラダイムとして浮上した。
この新しいグラフ学習パラダイムの中核は、複雑な構造的関係を捉えるGNNの能力と、グラフのリッチテキスト記述から情報的コンテキストを理解する能力の相乗的組み合わせにある。
したがって、グラフ記述テキストをリッチなセマンティックコンテキストで活用することで、データ品質を根本的に向上させ、データ中心の機械学習原則に沿ったモデル中心のアプローチの表現能力を向上させることができる。
これらの異なるニューラルネットワークアーキテクチャの強みを活用することで、この統合アプローチは、特に複雑な産業シナリオ(例えば、教師付き、少数ショット、ゼロショット設定)において、幅広いTAGベースのタスク(例えば、グラフ学習、グラフ推論、グラフ質問応答)に対処する。
言い換えれば、テキストを媒体として扱い、グラフ学習モデルのクロスドメイン一般化を可能にし、単一のグラフモデルで異なるデータ領域にわたる下流グラフベースのタスクの多様性を効果的に扱えるようにする。
この研究は、LLMの急速に発展するランドスケープにおいて、グラフ学習の方法論を進化させようとする研究者や実践者にとって、基礎的な参考となる。
我々は,関連するオープンソース資料を,常に<url{https://github.com/xkLi-Allen/Awesome-GNN-in-LLMs-Papers} で管理している。
関連論文リスト
- Democratizing Large Language Model-Based Graph Data Augmentation via Latent Knowledge Graphs [22.218522445858344]
グラフデータの不足やノイズによるグラフ表現学習には,データ拡張が必要である。
我々は、LCMのガイダンスであるDemoGraphを用いて、ブラックボックスのコンテキスト駆動グラフデータ拡張手法を提案する。
本手法は,電子健康記録(EHRs)のシナリオに優れ,文脈知識の最大限活用を実証する。
論文 参考訳(メタデータ) (2025-02-19T09:00:32Z) - NT-LLM: A Novel Node Tokenizer for Integrating Graph Structure into Large Language Models [26.739650151993928]
グラフは、現実世界のシナリオにおける関係を表現するための基本的なデータ構造である。
グラフ関連のタスクにLLM(Large Language Models)を適用することは、大きな課題となる。
我々は,グラフ構造を効率的にエンコードする新しいフレームワークNT-LLM(Node Tokenizer for Large Language Models)を紹介する。
論文 参考訳(メタデータ) (2024-10-14T17:21:57Z) - Let's Ask GNN: Empowering Large Language Model for Graph In-Context Learning [28.660326096652437]
本稿では,逐次テキスト処理とグラフ構造化データのギャップを埋める新しいアプローチであるAskGNNを紹介する。
AskGNNはグラフニューラルネットワーク(GNN)を利用した構造強化レトリバーを使用して、グラフをまたいだラベル付きノードを選択する。
3つのタスクと7つのLLMにわたる実験は、グラフタスクのパフォーマンスにおいてAskGNNが優れていることを示す。
論文 参考訳(メタデータ) (2024-10-09T17:19:12Z) - How Do Large Language Models Understand Graph Patterns? A Benchmark for Graph Pattern Comprehension [53.6373473053431]
この研究は、グラフパターンタスクにおける大規模言語モデルの能力を評価するためのベンチマークを導入する。
我々は,LLMが用語的記述と位相的記述の両方に基づいて,グラフパターンを理解できるかどうかを評価するベンチマークを開発した。
私たちのベンチマークでは、合成データセットと実際のデータセットの両方と、11のタスクと7のモデルで構成されています。
論文 参考訳(メタデータ) (2024-10-04T04:48:33Z) - All Against Some: Efficient Integration of Large Language Models for Message Passing in Graph Neural Networks [51.19110891434727]
事前訓練された知識と強力なセマンティック理解能力を持つ大規模言語モデル(LLM)は、最近、視覚とテキストデータを使用してアプリケーションに恩恵をもたらす顕著な能力を示している。
E-LLaGNNは、グラフから限られたノード数を増やして、グラフ学習のメッセージパッシング手順を強化するオンデマンドLLMサービスを備えたフレームワークである。
論文 参考訳(メタデータ) (2024-07-20T22:09:42Z) - A Survey of Large Language Models for Graphs [21.54279919476072]
我々は、グラフ学習に適用された最新の最先端の大規模言語モデルについて、詳細なレビューを行う。
フレームワーク設計に基づいて既存の手法を分類する新しい分類法を提案する。
各フレームワークの長所と短所について検討し,今後の研究への可能性を強調する。
論文 参考訳(メタデータ) (2024-05-10T18:05:37Z) - Large Language Models on Graphs: A Comprehensive Survey [77.16803297418201]
グラフ上の大規模言語モデルに関連するシナリオとテクニックを体系的にレビューする。
まず,LLMをグラフに適用する可能性シナリオを,純グラフ,テキスト分散グラフ,テキストペアグラフの3つのカテゴリにまとめる。
本稿では,そのような手法の現実的な応用について論じ,オープンソースコードとベンチマークデータセットを要約する。
論文 参考訳(メタデータ) (2023-12-05T14:14:27Z) - Disentangled Representation Learning with Large Language Models for
Text-Attributed Graphs [57.052160123387104]
本稿では,TAGに対するLLMの推論と予測能力を向上させることができるDGTLモデルを提案する。
提案するDGTLモデルでは, グラフ構造情報をGNN層に組み込む。
実験により,提案したDGTLモデルにより,最先端のベースラインよりも優れた性能,あるいは同等の性能が得られることを示した。
論文 参考訳(メタデータ) (2023-10-27T14:00:04Z) - GraphGPT: Graph Instruction Tuning for Large Language Models [27.036935149004726]
グラフニューラルネットワーク(GNN)は、グラフ構造を理解するために進化してきた。
堅牢性を高めるために、自己教師付き学習(SSL)はデータ拡張の重要なツールとなっている。
本研究は,ゼロショット学習環境におけるグラフモデルの一般化を推し進めることによって,この問題に対処する。
論文 参考訳(メタデータ) (2023-10-19T06:17:46Z) - Integrating Graphs with Large Language Models: Methods and Prospects [68.37584693537555]
大規模言語モデル (LLMs) が最前線として登場し、様々なアプリケーションにおいて非並列の長所を示している。
LLMとグラフ構造化データを組み合わせることは、非常に興味深いトピックです。
本稿では、そのような統合を2つの主要なカテゴリに分岐する。
論文 参考訳(メタデータ) (2023-10-09T07:59:34Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
本稿では,テンソルで表されるグラフの集合に関連するデータから,スケーラブルな半教師付き学習(SSL)を実現するためのテンソルグラフ畳み込みネットワーク(TGCN)を提案する。
提案アーキテクチャは、標準的なGCNと比較して大幅に性能が向上し、最先端の敵攻撃に対処し、タンパク質間相互作用ネットワーク上でのSSL性能が著しく向上する。
論文 参考訳(メタデータ) (2020-03-15T02:33:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。