論文の概要: MetaSC: Test-Time Safety Specification Optimization for Language Models
- arxiv url: http://arxiv.org/abs/2502.07985v1
- Date: Tue, 11 Feb 2025 22:06:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-13 13:50:44.912256
- Title: MetaSC: Test-Time Safety Specification Optimization for Language Models
- Title(参考訳): MetaSC: 言語モデルのテスト時間安全仕様最適化
- Authors: Víctor Gallego,
- Abstract要約: モデル重みを変更することなく、推論時に言語モデル(LM)の安全性推論を最適化する新しい動的安全フレームワークを提案する。
我々は、安全プロンプト仕様を反復的に更新して、批判と修正プロセスを適応的に駆動するメタ批判機構を活用する。
- 参考スコア(独自算出の注目度): 0.6526824510982799
- License:
- Abstract: We propose a novel dynamic safety framework that optimizes language model (LM) safety reasoning at inference time without modifying model weights. Building on recent advances in self-critique methods, our approach leverages a meta-critique mechanism that iteratively updates safety prompts-termed specifications-to drive the critique and revision process adaptively. This test-time optimization not only improves performance against adversarial jailbreak requests but also in diverse general safety-related tasks, such as avoiding moral harm or pursuing honest responses. Our empirical evaluations across several language models demonstrate that dynamically optimized safety prompts yield significantly higher safety scores compared to fixed system prompts and static self-critique defenses. Code to be released at https://github.com/vicgalle/meta-self-critique.git .
- Abstract(参考訳): 本稿では,モデル重みを変更することなく,推論時に言語モデル(LM)の安全性推論を最適化する新しい動的安全フレームワークを提案する。
近年の自己批判手法の進歩を基盤として,安全プロンプト決定仕様の更新を反復的に行うメタ批判機構を活用し,批判・修正プロセスを適応的に進める。
このテストタイム最適化は、敵のジェイルブレイク要求に対するパフォーマンスを改善するだけでなく、道徳的な害を避けたり、正直な反応を追求したりといった、さまざまな安全関連タスクでも改善する。
複数の言語モデルにまたがる実験的な評価により、動的に最適化された安全プロンプトは、固定されたシステムプロンプトや静的な自己批判的防御よりもはるかに高い安全性スコアが得られることが示された。
コードはhttps://github.com/vicgalle/meta-self-critique.gitで公開される。
関連論文リスト
- DELMAN: Dynamic Defense Against Large Language Model Jailbreaking with Model Editing [62.43110639295449]
大きな言語モデル(LLM)は意思決定に広く適用されているが、そのデプロイはJailbreak攻撃によって脅かされている。
Delmanは、jailbreak攻撃に対する厳密でダイナミックな保護のために、直接モデル編集を活用する新しいアプローチである。
Delman氏は、モデルの有用性を維持しながら有害な振る舞いを中和するために、関連するパラメータの最小セットを直接更新する。
論文 参考訳(メタデータ) (2025-02-17T10:39:21Z) - STAIR: Improving Safety Alignment with Introspective Reasoning [44.780098674618614]
SafeTyアライメントとItrospective Reasoningを統合したフレームワークSTAIRを提案する。
その結果,STAIRは本能的アライメント戦略と比較して,有害なアウトプットを効果的に軽減し,有用性を保っていることがわかった。
テスト時のスケーリングでは、STAIRは一般的なジェイルブレイク攻撃に対して、Claude-3.5に匹敵する安全性能を達成する。
論文 参考訳(メタデータ) (2025-02-04T15:02:55Z) - Model-Editing-Based Jailbreak against Safety-aligned Large Language Models [13.887770576598646]
大規模言語モデル(LLM)は、先進的な自然言語相互作用を実現することによって、多くの分野を変革してきた。
本稿では,安全フィルタをバイパスする新しいホワイトボックス手法であるターゲットモデル編集(TME)を提案する。
TMEはモデル行列に埋め込まれた安全クリティカルトランスフォーメーション(SCT)を特定し、削除し、悪意のあるクエリが制限をバイパスできるようにする。
論文 参考訳(メタデータ) (2024-12-11T08:44:15Z) - Safe to Serve: Aligning Instruction-Tuned Models for Safety and Helpfulness [0.0]
大規模言語モデル (LLM) は複雑な推論やテキスト生成において顕著な能力を示した。
LLMは、問題のある入力を誘導すると、不安全または偏りの応答を不注意に生成することができる。
本研究は、有用なコンテンツと無害コンテンツの両方を生成する言語モデルを開発する上で、重要な課題に対処する。
論文 参考訳(メタデータ) (2024-11-26T06:52:22Z) - SCANS: Mitigating the Exaggerated Safety for LLMs via Safety-Conscious Activation Steering [56.92068213969036]
悪意のある命令から脅威を守るために、LLM(Large Language Models)には安全アライメントが不可欠である。
近年の研究では、過大な安全性の問題により、安全性に配慮したLCMは、良質な問い合わせを拒否する傾向にあることが明らかになっている。
過大な安全性の懸念を和らげるために,SCANS法を提案する。
論文 参考訳(メタデータ) (2024-08-21T10:01:34Z) - Safety Arithmetic: A Framework for Test-time Safety Alignment of Language Models by Steering Parameters and Activations [19.132597762214722]
現在のアライメント手法は、動的なユーザ意図と複雑な目的に苦しむ。
異なるシナリオにおける安全性を向上させるトレーニングフリーフレームワークであるSafety Arithmeticを提案する。
実験の結果,安全算術は安全対策を大幅に改善し,過度な安全性を低減し,モデルの有用性を維持できることがわかった。
論文 参考訳(メタデータ) (2024-06-17T17:48:13Z) - On Prompt-Driven Safeguarding for Large Language Models [172.13943777203377]
表現空間では、入力クエリは通常、安全プロンプトによって「より高い拒絶」方向に移動される。
これらの知見に触発されて,安全性向上,すなわちDROの最適化手法を提案する。
安全性プロンプトを継続的かつトレーニング可能な埋め込みとして扱うことで、DROは、その有害性に応じて、クエリの表現を拒否方向に沿ってあるいは反対に移動させることを学ぶ。
論文 参考訳(メタデータ) (2024-01-31T17:28:24Z) - The Art of Defending: A Systematic Evaluation and Analysis of LLM
Defense Strategies on Safety and Over-Defensiveness [56.174255970895466]
大規模言語モデル(LLM)は、自然言語処理アプリケーションにおいて、ますます重要な役割を担っている。
本稿では,SODE(Safety and Over-Defensiveness Evaluation)ベンチマークを提案する。
論文 参考訳(メタデータ) (2023-12-30T17:37:06Z) - ASSERT: Automated Safety Scenario Red Teaming for Evaluating the
Robustness of Large Language Models [65.79770974145983]
ASSERT、Automated Safety Scenario Red Teamingは、セマンティックなアグリゲーション、ターゲットブートストラップ、敵の知識注入という3つの方法で構成されている。
このプロンプトを4つの安全領域に分割し、ドメインがモデルの性能にどのように影響するかを詳細に分析する。
統計的に有意な性能差は, 意味的関連シナリオにおける絶対分類精度が最大11%, ゼロショット逆数設定では最大19%の絶対誤差率であることがわかった。
論文 参考訳(メタデータ) (2023-10-14T17:10:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。