The Role of Randomness in Stability
- URL: http://arxiv.org/abs/2502.08007v1
- Date: Tue, 11 Feb 2025 23:06:43 GMT
- Title: The Role of Randomness in Stability
- Authors: Max Hopkins, Shay Moran,
- Abstract summary: We study the randomness complexity of two influential notions of stability in learning: replicability and differential privacy.
We prove a weak-to-strong' boosting theorem for stability: the randomness complexity of a task is tightly controlled by the best replication probability.
- Score: 20.718747268949112
- License:
- Abstract: Stability is a central property in learning and statistics promising the output of an algorithm $A$ does not change substantially when applied to similar datasets $S$ and $S'$. It is an elementary fact that any sufficiently stable algorithm (e.g.\ one returning the same result with high probability, satisfying privacy guarantees, etc.) must be randomized. This raises a natural question: can we quantify how much randomness is needed for algorithmic stability? We study the randomness complexity of two influential notions of stability in learning: replicability, which promises $A$ usually outputs the same result when run over samples from the same distribution (and shared random coins), and differential privacy, which promises the output distribution of $A$ remains similar under neighboring datasets. The randomness complexity of these notions was studied recently in (Dixon et al. ICML 2024) and (Cannone et al. ITCS 2024) for basic $d$-dimensional tasks (e.g. estimating the bias of $d$ coins), but little is known about the measures more generally or in complex settings like classification. Toward this end, we prove a `weak-to-strong' boosting theorem for stability: the randomness complexity of a task $M$ (either under replicability or DP) is tightly controlled by the best replication probability of any deterministic algorithm solving the task, a weak measure called `global stability' that is universally capped at $\frac{1}{2}$ (Chase et al. FOCS 2023). Using this, we characterize the randomness complexity of PAC Learning: a class has bounded randomness complexity iff it has finite Littlestone dimension, and moreover scales at worst logarithmically in the excess error of the learner. This resolves a question of (Chase et al. STOC 2024) who asked for such a characterization in the equivalent language of (error-dependent) `list-replicability'.
Related papers
- Rényi divergence-based uniformity guarantees for $k$-universal hash functions [59.90381090395222]
Universal hash functions map the output of a source to random strings over a finite alphabet.
We show that it is possible to distill random bits that are nearly uniform, as measured by min-entropy.
arXiv Detail & Related papers (2024-10-21T19:37:35Z) - Computational-Statistical Gaps in Gaussian Single-Index Models [77.1473134227844]
Single-Index Models are high-dimensional regression problems with planted structure.
We show that computationally efficient algorithms, both within the Statistical Query (SQ) and the Low-Degree Polynomial (LDP) framework, necessarily require $Omega(dkstar/2)$ samples.
arXiv Detail & Related papers (2024-03-08T18:50:19Z) - On the average-case complexity of learning output distributions of
quantum circuits [55.37943886895049]
We show that learning the output distributions of brickwork random quantum circuits is average-case hard in the statistical query model.
This learning model is widely used as an abstract computational model for most generic learning algorithms.
arXiv Detail & Related papers (2023-05-09T20:53:27Z) - Replicability and stability in learning [16.936594801109557]
Impagliazzo, Lei, Pitassi and Sorrell (22) recently initiated the study of replicability in machine learning.
We show how to boost any replicable algorithm so that it produces the same output with probability arbitrarily close to 1.
We prove that list replicability can be boosted so that it is achieved with probability arbitrarily close to 1.
arXiv Detail & Related papers (2023-04-07T17:52:26Z) - A Scale-Invariant Sorting Criterion to Find a Causal Order in Additive
Noise Models [49.038420266408586]
We show that sorting variables by increasing variance often yields an ordering close to a causal order.
We propose an efficient baseline algorithm termed $R2$-SortnRegress that exploits high $R2$-sortability.
Our findings reveal high $R2$-sortability as an assumption about the data generating process relevant to causal discovery.
arXiv Detail & Related papers (2023-03-31T17:05:46Z) - Improved Sample Complexity Bounds for Distributionally Robust
Reinforcement Learning [3.222802562733787]
We consider the problem of learning a control policy that is robust against the parameter mismatches between the training environment and testing environment.
We propose the Robust Phased Value Learning (RPVL) algorithm to solve this problem for the uncertainty sets specified by four different divergences.
We show that our algorithm achieves $tildemathcalO(|mathcalSmathcalA| H5)$ sample complexity, which is uniformly better than the existing results.
arXiv Detail & Related papers (2023-03-05T21:47:08Z) - A Finite Sample Complexity Bound for Distributionally Robust Q-learning [17.96094201655567]
We consider a reinforcement learning setting in which the deployment environment is different from the training environment.
Applying a robust Markov decision processes formulation, we extend the distributionally robust $Q$-learning framework studied in Liu et al.
This is the first sample complexity result for the model-free robust RL problem.
arXiv Detail & Related papers (2023-02-26T01:15:32Z) - Replicable Clustering [57.19013971737493]
We propose algorithms for the statistical $k$-medians, statistical $k$-means, and statistical $k$-centers problems by utilizing approximation routines for their counterparts in a black-box manner.
We also provide experiments on synthetic distributions in 2D using the $k$-means++ implementation from sklearn as a black-box that validate our theoretical results.
arXiv Detail & Related papers (2023-02-20T23:29:43Z) - On the Sample Complexity of Representation Learning in Multi-task
Bandits with Global and Local structure [77.60508571062958]
We investigate the sample complexity of learning the optimal arm for multi-task bandit problems.
Arms consist of two components: one that is shared across tasks (that we call representation) and one that is task-specific (that we call predictor)
We devise an algorithm OSRL-SC whose sample complexity approaches the lower bound, and scales at most as $H(Glog(delta_G)+ Xlog(delta_H))$, with $X,G,H$ being, respectively, the number of tasks, representations and predictors.
arXiv Detail & Related papers (2022-11-28T08:40:12Z) - Metric-Fair Classifier Derandomization [6.269732593554894]
We study the problem of classifier derandomization in machine learning.
We show that the prior derandomization approach is almost maximally metric-unfair.
We devise a derandomization procedure that provides an appealing tradeoff between these two.
arXiv Detail & Related papers (2022-06-15T21:36:57Z) - Sample Complexity Bounds for Robustly Learning Decision Lists against
Evasion Attacks [25.832511407411637]
A fundamental problem in adversarial machine learning is to quantify how much training data is needed in the presence of evasion attacks.
We work with probability distributions on the input data that satisfy a Lipschitz condition: nearby points have similar probability.
For every fixed $k$ the class of $k$-decision lists has sample complexity against a $log(n)$-bounded adversary.
arXiv Detail & Related papers (2022-05-12T14:40:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.