The Geometry of Prompting: Unveiling Distinct Mechanisms of Task Adaptation in Language Models
- URL: http://arxiv.org/abs/2502.08009v1
- Date: Tue, 11 Feb 2025 23:09:50 GMT
- Title: The Geometry of Prompting: Unveiling Distinct Mechanisms of Task Adaptation in Language Models
- Authors: Artem Kirsanov, Chi-Ning Chou, Kyunghyun Cho, SueYeon Chung,
- Abstract summary: We study how different prompting methods affect the geometry of representations in language models.
Our analysis highlights the critical role of input distribution samples and label semantics in few-shot in-context learning.
Our work contributes to the theoretical understanding of large language models and lays the groundwork for developing more effective, representation-aware prompting strategies.
- Score: 40.128112851978116
- License:
- Abstract: Decoder-only language models have the ability to dynamically switch between various computational tasks based on input prompts. Despite many successful applications of prompting, there is very limited understanding of the internal mechanism behind such flexibility. In this work, we investigate how different prompting methods affect the geometry of representations in these models. Employing a framework grounded in statistical physics, we reveal that various prompting techniques, while achieving similar performance, operate through distinct representational mechanisms for task adaptation. Our analysis highlights the critical role of input distribution samples and label semantics in few-shot in-context learning. We also demonstrate evidence of synergistic and interfering interactions between different tasks on the representational level. Our work contributes to the theoretical understanding of large language models and lays the groundwork for developing more effective, representation-aware prompting strategies.
Related papers
- Explaining and Mitigating the Modality Gap in Contrastive Multimodal Learning [7.412307614007383]
Multimodal learning models are designed to bridge different modalities, such as images and text, by learning a shared representation space.
These models often exhibit a modality gap, where different modalities occupy distinct regions within the shared representation space.
We identify the critical roles of mismatched data pairs and a learnable temperature parameter in causing and perpetuating the modality gap during training.
arXiv Detail & Related papers (2024-12-10T20:36:49Z) - Unified Generative and Discriminative Training for Multi-modal Large Language Models [88.84491005030316]
Generative training has enabled Vision-Language Models (VLMs) to tackle various complex tasks.
Discriminative training, exemplified by models like CLIP, excels in zero-shot image-text classification and retrieval.
This paper proposes a unified approach that integrates the strengths of both paradigms.
arXiv Detail & Related papers (2024-11-01T01:51:31Z) - Counting in Small Transformers: The Delicate Interplay between Attention and Feed-Forward Layers [16.26331213222281]
We investigate how architectural design choices influence the space of solutions that a transformer can implement and learn.
We characterize two different counting strategies that small transformers can implement theoretically.
Our findings highlight that even in simple settings, slight variations in model design can cause significant changes to the solutions a transformer learns.
arXiv Detail & Related papers (2024-07-16T09:48:10Z) - LVLM-Interpret: An Interpretability Tool for Large Vision-Language Models [50.259006481656094]
We present a novel interactive application aimed towards understanding the internal mechanisms of large vision-language models.
Our interface is designed to enhance the interpretability of the image patches, which are instrumental in generating an answer.
We present a case study of how our application can aid in understanding failure mechanisms in a popular large multi-modal model: LLaVA.
arXiv Detail & Related papers (2024-04-03T23:57:34Z) - Feature Interactions Reveal Linguistic Structure in Language Models [2.0178765779788495]
We study feature interactions in the context of feature attribution methods for post-hoc interpretability.
We work out a grey box methodology, in which we train models to perfection on a formal language classification task.
We show that under specific configurations, some methods are indeed able to uncover the grammatical rules acquired by a model.
arXiv Detail & Related papers (2023-06-21T11:24:41Z) - Dynamic Prompting: A Unified Framework for Prompt Tuning [33.175097465669374]
We present a unified dynamic prompt (DP) tuning strategy that dynamically determines different factors of prompts based on specific tasks and instances.
Experimental results underscore the significant performance improvement achieved by dynamic prompt tuning across a wide range of tasks.
We establish the universal applicability of our approach under full-data, few-shot, and multitask scenarios.
arXiv Detail & Related papers (2023-03-06T06:04:46Z) - Task Formulation Matters When Learning Continually: A Case Study in
Visual Question Answering [58.82325933356066]
Continual learning aims to train a model incrementally on a sequence of tasks without forgetting previous knowledge.
We present a detailed study of how different settings affect performance for Visual Question Answering.
arXiv Detail & Related papers (2022-09-30T19:12:58Z) - Rethinking the Role of Demonstrations: What Makes In-Context Learning
Work? [112.72413411257662]
Large language models (LMs) are able to in-context learn by conditioning on a few input-label pairs (demonstrations) and making predictions for new inputs.
We show that ground truth demonstrations are in fact not required -- randomly replacing labels in the demonstrations barely hurts performance.
We find that other aspects of the demonstrations are the key drivers of end task performance.
arXiv Detail & Related papers (2022-02-25T17:25:19Z) - Interpretable Multi-dataset Evaluation for Named Entity Recognition [110.64368106131062]
We present a general methodology for interpretable evaluation for the named entity recognition (NER) task.
The proposed evaluation method enables us to interpret the differences in models and datasets, as well as the interplay between them.
By making our analysis tool available, we make it easy for future researchers to run similar analyses and drive progress in this area.
arXiv Detail & Related papers (2020-11-13T10:53:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.