論文の概要: Training-Free Safe Denoisers for Safe Use of Diffusion Models
- arxiv url: http://arxiv.org/abs/2502.08011v1
- Date: Tue, 11 Feb 2025 23:14:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-13 18:10:00.811603
- Title: Training-Free Safe Denoisers for Safe Use of Diffusion Models
- Title(参考訳): 拡散モデルの安全利用のための無トレーニング安全ディナイザ
- Authors: Mingyu Kim, Dongjun Kim, Amman Yusuf, Stefano Ermon, Mi Jung Park,
- Abstract要約: 強力な拡散モデル(DM)は、安全でない作業用コンテンツ(NSFW)を生成したり、忘れられたい個人の著作権のある資料やデータを生成するためにしばしば誤用される。
我々は,データ分布の否定領域を回避しつつ,高品質なサンプルを生成する実用的なアルゴリズムを開発した。
これらの結果は、DMをより安全に使用するための、トレーニング不要の安全なデノイザーの大きな可能性を示唆している。
- 参考スコア(独自算出の注目度): 49.045799120267915
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: There is growing concern over the safety of powerful diffusion models (DMs), as they are often misused to produce inappropriate, not-safe-for-work (NSFW) content or generate copyrighted material or data of individuals who wish to be forgotten. Many existing methods tackle these issues by heavily relying on text-based negative prompts or extensively retraining DMs to eliminate certain features or samples. In this paper, we take a radically different approach, directly modifying the sampling trajectory by leveraging a negation set (e.g., unsafe images, copyrighted data, or datapoints needed to be excluded) to avoid specific regions of data distribution, without needing to retrain or fine-tune DMs. We formally derive the relationship between the expected denoised samples that are safe and those that are not safe, leading to our $\textit{safe}$ denoiser which ensures its final samples are away from the area to be negated. Inspired by the derivation, we develop a practical algorithm that successfully produces high-quality samples while avoiding negation areas of the data distribution in text-conditional, class-conditional, and unconditional image generation scenarios. These results hint at the great potential of our training-free safe denoiser for using DMs more safely.
- Abstract(参考訳): 強力な拡散モデル(DM)の安全性に対する懸念が高まっている。それは、しばしば不適切で安全でない作業用コンテンツ(NSFW)や、忘れられることを望んだ個人の著作権のある資料やデータを生成するために誤用されるためである。
既存の多くの手法は、テキストベースの負のプロンプトに強く依存したり、特定の特徴やサンプルを排除するためにDMを広範囲に再訓練することで、これらの問題に対処している。
本稿では,データ配信の特定の領域を回避するために,否定セット(例えば,安全でない画像,著作権付きデータ,データポイントなど)を活用することで,DMの調整や微調整を必要とせず,サンプリング軌道を直接修正するという,根本的に異なるアプローチをとる。
公式には、安全でないものと安全でないものとの関係を導き、最終的なサンプルが否定される領域から離れていることを保証する$\textit{safe}$ denoiserに繋がる。
本研究では,テキスト条件,クラス条件,非条件画像生成シナリオにおいて,データ分布の否定領域を回避しつつ,高品質なサンプル生成を成功させる実用的なアルゴリズムを開発した。
これらの結果は、DMをより安全に使用するための、トレーニング不要の安全なデノイザーの大きな可能性を示唆している。
関連論文リスト
- Do We Really Need Curated Malicious Data for Safety Alignment in Multi-modal Large Language Models? [83.53005932513155]
MLLM(Multi-modal large language model)は大きな進歩を遂げているが、その安全性は依然として限られている。
そこで我々は, 単純明快な拒絶文に代えて, 少数の良性命令追従データに対して, MLLMを微調整する手法を提案する。
論文 参考訳(メタデータ) (2025-04-14T09:03:51Z) - Detect-and-Guide: Self-regulation of Diffusion Models for Safe Text-to-Image Generation via Guideline Token Optimization [22.225141381422873]
有害なコンテンツを生成するテキストと画像の拡散モデルに対する懸念が高まっている。
概念アンラーニングや安全ガイダンスのようなポストホックモデルの介入技術は、これらのリスクを軽減するために開発されている。
本稿では,自己診断と詳細な自己制御を行うための安全生成フレームワークであるDector-and-Guide(DAG)を提案する。
DAGは最先端の安全な生成性能を実現し、有害性軽減とテキスト追跡性能を現実のプロンプトでバランスさせる。
論文 参考訳(メタデータ) (2025-03-19T13:37:52Z) - Safe Vision-Language Models via Unsafe Weights Manipulation [75.04426753720551]
我々は、異なるレベルの粒度で安全性を評価する新しい指標セットであるSafe-Groundを導入し、安全性の評価を見直した。
我々は異なる方向を採り、トレーニングなしでモデルをより安全にできるかどうかを探り、Unsafe Weights Manipulation (UWM)を導入します。
UWMは、セーフとアンセーフのインスタンスのキャリブレーションセットを使用して、セーフとアンセーフのコンテンツのアクティベーションを比較し、後者を処理する上で最も重要なパラメータを特定する。
論文 参考訳(メタデータ) (2025-03-14T17:00:22Z) - CROPS: Model-Agnostic Training-Free Framework for Safe Image Synthesis with Latent Diffusion Models [13.799517170191919]
最近の研究では、安全チェッカーは敵の攻撃に対して脆弱性があることが示されており、NSFW(Not Safe For Work)イメージを生成することができる。
我々は、NSFW画像を生成する敵攻撃に対して、追加の訓練を必要とせずに容易に防御できるモデルに依存しないフレームワークであるCROPSを提案する。
論文 参考訳(メタデータ) (2025-01-09T16:43:21Z) - Safety Without Semantic Disruptions: Editing-free Safe Image Generation via Context-preserving Dual Latent Reconstruction [88.18235230849554]
大規模で未処理のデータセットでマルチモーダル生成モデルをトレーニングすることで、ユーザは有害で安全でない、議論の余地のない、文化的に不適切なアウトプットにさらされる可能性がある。
我々は、安全な埋め込みと、より安全な画像を生成するために、潜伏空間の重み付け可能な総和による修正拡散プロセスを活用する。
安全と検閲のトレードオフを特定し、倫理的AIモデルの開発に必要な視点を提示します。
論文 参考訳(メタデータ) (2024-11-21T09:47:13Z) - Revealing the Unseen: Guiding Personalized Diffusion Models to Expose Training Data [10.619162675453806]
拡散モデル(DM)は高度な画像生成ツールへと進化してきた。
FineXtractは、微調整データを抽出するフレームワークである。
WikiArtやDreamBoothといったデータセットで微調整されたDMの実験や、オンラインにポストされた実世界のチェックポイントは、我々の方法の有効性を検証する。
論文 参考訳(メタデータ) (2024-10-03T23:06:11Z) - Score Forgetting Distillation: A Swift, Data-Free Method for Machine Unlearning in Diffusion Models [63.43422118066493]
マシン・アンラーニング(MU)は安全でセキュアで信頼性の高いGenAIモデルを開発する上で重要な基盤である。
従来のMUメソッドは、しばしば厳密な仮定に依存し、実際のデータへのアクセスを必要とする。
本稿では,拡散モデルにおいて望ましくない情報を忘れることを促進する革新的なMUアプローチであるScore Forgetting Distillation (SFD)を紹介する。
論文 参考訳(メタデータ) (2024-09-17T14:12:50Z) - Breaking Free: How to Hack Safety Guardrails in Black-Box Diffusion Models! [52.0855711767075]
EvoSeedは、フォトリアリスティックな自然対向サンプルを生成するための進化戦略に基づくアルゴリズムフレームワークである。
我々は,CMA-ESを用いて初期種ベクトルの探索を最適化し,条件付き拡散モデルで処理すると,自然逆数サンプルをモデルで誤分類する。
実験の結果, 生成した対向画像は画像品質が高く, 安全分類器を通過させることで有害なコンテンツを生成する懸念が高まっていることがわかった。
論文 参考訳(メタデータ) (2024-02-07T09:39:29Z) - To Generate or Not? Safety-Driven Unlearned Diffusion Models Are Still Easy To Generate Unsafe Images ... For Now [22.75295925610285]
拡散モデル(DM)は、現実的で複雑な画像の生成に革命をもたらした。
DMはまた、有害なコンテンツの生成やデータ著作権の侵害など、潜在的な安全上の危険性も導入している。
安全駆動の未学習技術の発展にもかかわらず、その有効性に対する疑念は続いている。
論文 参考訳(メタデータ) (2023-10-18T10:36:34Z) - SafeDiffuser: Safe Planning with Diffusion Probabilistic Models [97.80042457099718]
拡散モデルに基づくアプローチは、データ駆動計画において有望であるが、安全保証はない。
我々は,拡散確率モデルが仕様を満たすことを保証するために,SafeDiffuserと呼ばれる新しい手法を提案する。
提案手法は,迷路経路の生成,足歩行ロボットの移動,空間操作など,安全な計画作業の一連のテストを行う。
論文 参考訳(メタデータ) (2023-05-31T19:38:12Z) - Diffusion-Based Adversarial Sample Generation for Improved Stealthiness
and Controllability [62.105715985563656]
そこで本研究では,現実的な対向サンプルを生成するための拡散型射影勾配 Descent (Diff-PGD) という新しいフレームワークを提案する。
我々のフレームワークは、デジタルアタック、物理世界アタック、スタイルベースのアタックなど、特定のタスクに簡単にカスタマイズできる。
論文 参考訳(メタデータ) (2023-05-25T21:51:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。