論文の概要: Franken-Adapter: Cross-Lingual Adaptation of LLMs by Embedding Surgery
- arxiv url: http://arxiv.org/abs/2502.08037v1
- Date: Wed, 12 Feb 2025 00:38:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-13 13:48:51.460220
- Title: Franken-Adapter: Cross-Lingual Adaptation of LLMs by Embedding Surgery
- Title(参考訳): Franken-Adapter:埋め込み手術によるLLMの言語間適応
- Authors: Fan Jiang, Honglin Yu, Grace Chung, Trevor Cohn,
- Abstract要約: 我々は,デコーダのみの大規模言語モデルに対するモジュール型言語適応アプローチであるtextitFranken-Adapter$を提示する。
提案手法は,対象言語用にカスタマイズされた語彙を作成し,多言語データへの組込みによる言語適応を行うことから始める。
最大27Bパラメータを持つ$ttGemma2$モデルの実験では、96言語で最大20%の改善が示され、識別的タスクと生成的タスクの両方にまたがっている。
- 参考スコア(独自算出の注目度): 31.516243610548635
- License:
- Abstract: The capabilities of Large Language Models (LLMs) in low-resource languages lag far behind those in English, making their universal accessibility a significant challenge. To alleviate this, we present $\textit{Franken-Adapter}$, a modular language adaptation approach for decoder-only LLMs with embedding surgery. Our method begins by creating customized vocabularies for target languages and performing language adaptation through embedding tuning on multilingual data. These pre-trained embeddings are subsequently integrated with LLMs that have been instruction-tuned on English alignment data to enable zero-shot cross-lingual transfer. Our experiments on $\texttt{Gemma2}$ models with up to 27B parameters demonstrate improvements of up to 20% across 96 languages, spanning both discriminative and generative tasks, with minimal regressions ($<$1%) in English. Further in-depth analysis reveals the critical role of customizing tokenizers in enhancing language adaptation, while boosting inference efficiency. Additionally, we show the versatility of our method by achieving a 14% improvement over a math-optimized LLM across 20 languages, offering a modular solution to transfer reasoning abilities across languages post hoc.
- Abstract(参考訳): 低リソース言語におけるLLM(Large Language Models)の能力は、英語のそれよりもはるかに遅れており、その普遍的なアクセシビリティは大きな課題となっている。
これを軽減するために,デコーダのみのLLMに組込み手術を施したモジュール型言語適応アプローチである $\textit{Franken-Adapter}$ を提案する。
提案手法は,対象言語用にカスタマイズされた語彙を作成し,多言語データへの組込みによる言語適応を行うことから始める。
これらの事前訓練された埋め込みはその後、英語のアライメントデータに基づいて命令調整されたLLMと統合され、ゼロショットのクロスランガル転送を可能にする。
最大27Bパラメータを持つ$\texttt{Gemma2}$モデルの実験では、96言語で最大20%の改善が示され、識別的タスクと生成的タスクの両方にまたがっており、英語では最小回帰(<1%)である。
さらに詳細な分析により、推論効率を高めつつ、言語適応性を高める上で、トークン化をカスタマイズする重要な役割が明らかにされる。
さらに,20言語にまたがる算数最適化 LLM よりも 14% の改善を実現し,提案手法の汎用性を示す。
関連論文リスト
- Lens: Rethinking Multilingual Enhancement for Large Language Models [70.85065197789639]
Lensは、大規模言語モデル(LLM)の多言語機能を強化する新しいアプローチである
LLMの上位層から言語に依存しない、言語固有のサブ空間内の隠された表現を操作できる。
既存のポストトレーニング手法に比べて計算資源がはるかに少ないため、優れた結果が得られる。
論文 参考訳(メタデータ) (2024-10-06T08:51:30Z) - Bridging the Language Gap: Enhancing Multilingual Prompt-Based Code Generation in LLMs via Zero-Shot Cross-Lingual Transfer [5.355430735475281]
本稿では,多言語プロンプトベースのコード生成の複雑さについて検討する。
評価の結果,非英語のプロンプトにおけるコード品質の相違が明らかとなった。
本稿では,ニューラルプロジェクション手法を用いたゼロショット言語間アプローチを提案する。
論文 参考訳(メタデータ) (2024-08-19T05:11:46Z) - RLHF Can Speak Many Languages: Unlocking Multilingual Preference Optimization for LLMs [13.563021984882704]
高品質な多言語フィードバックデータを生成するための,新しいスケーラブルな手法を提案する。
我々の選好訓練モデルはAya 23 8Bに対して54.4%の勝利率を達成した。
その結果,世界の人口の半分をカバーする23言語にアライメント手法のフロンティアを広げた。
論文 参考訳(メタデータ) (2024-07-02T17:42:30Z) - Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models [62.91524967852552]
大規模言語モデル(LLM)は、多言語コーパスの事前訓練のため、一般的に多言語である。
しかし、これらのモデルは言語間で対応する概念を関連付けることができ、効果的にクロスランガルなのでしょうか?
本研究は,言語横断的課題に関する6つの技術 LLM の評価を行った。
論文 参考訳(メタデータ) (2024-06-23T15:15:17Z) - TaCo: Enhancing Cross-Lingual Transfer for Low-Resource Languages in LLMs through Translation-Assisted Chain-of-Thought Processes [9.254047358707014]
本稿では,Alpaca-52K,Dolly-15K,Vicuna Benchmarkを132言語に翻訳する多言語インストラクション・チューニングデータセット(MITS)を紹介する。
次に,emphTaCo: Translation-Assisted Cross-Lingualityという新たな手法を提案する。
提案手法は,Vicuna Benchmark データセットの低リソース言語に対して 82% のスコアで GPT-4 を圧縮し,命令チューニングと比較して性能を2倍にすることを示す。
論文 参考訳(メタデータ) (2023-11-17T06:55:32Z) - The Ups and Downs of Large Language Model Inference with Vocabulary Trimming by Language Heuristics [74.99898531299148]
本研究は,興味のある言語への埋め込みエントリを制限し,時間と記憶効率を高めることによる語彙トリミング(VT)について検討する。
Unicodeベースのスクリプトフィルタリングとコーパスベースの選択という2つの言語を異なる言語ファミリやサイズに適用する。
その結果、VTは小型モデルのメモリ使用量を50%近く削減し、生成速度が25%向上した。
論文 参考訳(メタデータ) (2023-11-16T09:35:50Z) - Soft Language Clustering for Multilingual Model Pre-training [57.18058739931463]
本稿では,インスタンスを条件付きで符号化するためのフレキシブルガイダンスとして,コンテキスト的にプロンプトを検索するXLM-Pを提案する。
我々のXLM-Pは、(1)言語間における言語不変および言語固有知識の軽量なモデリングを可能にし、(2)他の多言語事前学習手法との容易な統合を可能にする。
論文 参考訳(メタデータ) (2023-06-13T08:08:08Z) - Romanization-based Large-scale Adaptation of Multilingual Language
Models [124.57923286144515]
大規模多言語事前学習言語モデル (mPLMs) は,NLPにおける多言語間移動のデファクトステートとなっている。
我々は、mPLMをローマン化および非ロマン化した14の低リソース言語コーパスに適用するためのデータとパラメータ効率の戦略を多数検討し、比較した。
以上の結果から, UROMAN をベースとしたトランスリテラルは,多くの言語で高い性能を達成できることがわかった。
論文 参考訳(メタデータ) (2023-04-18T09:58:34Z) - Efficiently Aligned Cross-Lingual Transfer Learning for Conversational
Tasks using Prompt-Tuning [98.60739735409243]
英語のような高リソース言語で訓練された言語モデルの言語間移動は、多くのNLPタスクのために広く研究されている。
並列および大規模多言語会話データセットである言語間アライメント事前学習のためのXSGDを導入する。
協調的な言語間表現を容易にするために,アライメントプロンプトを学習するための効率的なプロンプトチューニング手法を開発した。
論文 参考訳(メタデータ) (2023-04-03T18:46:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。