SLVR: Securely Leveraging Client Validation for Robust Federated Learning
- URL: http://arxiv.org/abs/2502.08055v1
- Date: Wed, 12 Feb 2025 01:31:39 GMT
- Title: SLVR: Securely Leveraging Client Validation for Robust Federated Learning
- Authors: Jihye Choi, Sai Rahul Rachuri, Ke Wang, Somesh Jha, Yizhen Wang,
- Abstract summary: Federated Learning (FL) enables collaborative model training while keeping client data private.
exposing individual client updates makes FL vulnerable to reconstruction attacks.
We propose SLVR, a framework that securely leverages clients' private data through secure multi-party robustness.
- Score: 20.333300286404107
- License:
- Abstract: Federated Learning (FL) enables collaborative model training while keeping client data private. However, exposing individual client updates makes FL vulnerable to reconstruction attacks. Secure aggregation mitigates such privacy risks but prevents the server from verifying the validity of each client update, creating a privacy-robustness tradeoff. Recent efforts attempt to address this tradeoff by enforcing checks on client updates using zero-knowledge proofs, but they support limited predicates and often depend on public validation data. We propose SLVR, a general framework that securely leverages clients' private data through secure multi-party computation. By utilizing clients' data, SLVR not only eliminates the need for public validation data, but also enables a wider range of checks for robustness, including cross-client accuracy validation. It also adapts naturally to distribution shifts in client data as it can securely refresh its validation data up-to-date. Our empirical evaluations show that SLVR improves robustness against model poisoning attacks, particularly outperforming existing methods by up to 50% under adaptive attacks. Additionally, SLVR demonstrates effective adaptability and stable convergence under various distribution shift scenarios.
Related papers
- Privacy-Preserving Verifiable Neural Network Inference Service [4.131956503199438]
We develop a privacy-preserving and verifiable CNN inference scheme that preserves privacy for client data samples.
vPIN achieves high efficiency in terms of proof size, while providing client data privacy guarantees and provable verifiability.
arXiv Detail & Related papers (2024-11-12T01:09:52Z) - ACCESS-FL: Agile Communication and Computation for Efficient Secure Aggregation in Stable Federated Learning Networks [26.002975401820887]
Federated Learning (FL) is a distributed learning framework designed for privacy-aware applications.
Traditional FL approaches risk exposing sensitive client data when plain model updates are transmitted to the server.
Google's Secure Aggregation (SecAgg) protocol addresses this threat by employing a double-masking technique.
We propose ACCESS-FL, a communication-and-computation-efficient secure aggregation method.
arXiv Detail & Related papers (2024-09-03T09:03:38Z) - Certifiably Byzantine-Robust Federated Conformal Prediction [49.23374238798428]
We introduce a novel framework Rob-FCP, which executes robust federated conformal prediction effectively countering malicious clients.
We empirically demonstrate the robustness of Rob-FCP against diverse proportions of malicious clients under a variety of Byzantine attacks.
arXiv Detail & Related papers (2024-06-04T04:43:30Z) - Robust Federated Learning Mitigates Client-side Training Data Distribution Inference Attacks [48.70867241987739]
InferGuard is a novel Byzantine-robust aggregation rule aimed at defending against client-side training data distribution inference attacks.
The results of our experiments indicate that our defense mechanism is highly effective in protecting against client-side training data distribution inference attacks.
arXiv Detail & Related papers (2024-03-05T17:41:35Z) - Towards Fair, Robust and Efficient Client Contribution Evaluation in
Federated Learning [16.543724155324938]
We introduce a novel method called Fair, Robust, and Efficient Client Assessment (FRECA) for quantifying client contributions in Federated Learning (FL)
FRECA employs a framework called FedTruth to estimate the global model's ground truth update, balancing contributions from all clients while filtering out impacts from malicious ones.
Our experimental results show that FRECA can accurately and efficiently quantify client contributions in a robust manner.
arXiv Detail & Related papers (2024-02-06T21:07:12Z) - Secure and Verifiable Data Collaboration with Low-Cost Zero-Knowledge
Proofs [30.260427020479536]
In this paper, we propose a novel and highly efficient solution RiseFL for secure and verifiable data collaboration.
Firstly, we devise a probabilistic integrity check method that significantly reduces the cost of ZKP generation and verification.
Thirdly, we design a hybrid commitment scheme to satisfy Byzantine robustness with improved performance.
arXiv Detail & Related papers (2023-11-26T14:19:46Z) - PS-FedGAN: An Efficient Federated Learning Framework Based on Partially
Shared Generative Adversarial Networks For Data Privacy [56.347786940414935]
Federated Learning (FL) has emerged as an effective learning paradigm for distributed computation.
This work proposes a novel FL framework that requires only partial GAN model sharing.
Named as PS-FedGAN, this new framework enhances the GAN releasing and training mechanism to address heterogeneous data distributions.
arXiv Detail & Related papers (2023-05-19T05:39:40Z) - Client-specific Property Inference against Secure Aggregation in
Federated Learning [52.8564467292226]
Federated learning has become a widely used paradigm for collaboratively training a common model among different participants.
Many attacks have shown that it is still possible to infer sensitive information such as membership, property, or outright reconstruction of participant data.
We show that simple linear models can effectively capture client-specific properties only from the aggregated model updates.
arXiv Detail & Related papers (2023-03-07T14:11:01Z) - Robust Quantity-Aware Aggregation for Federated Learning [72.59915691824624]
Malicious clients can poison model updates and claim large quantities to amplify the impact of their model updates in the model aggregation.
Existing defense methods for FL, while all handling malicious model updates, either treat all quantities benign or simply ignore/truncate the quantities of all clients.
We propose a robust quantity-aware aggregation algorithm for federated learning, called FedRA, to perform the aggregation with awareness of local data quantities.
arXiv Detail & Related papers (2022-05-22T15:13:23Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
Federated Learning allows a large number of clients to train a joint model without the need to share their private data.
To ensure the confidentiality of the client updates, Federated Learning systems employ secure aggregation.
We present RoFL, a secure Federated Learning system that improves robustness against malicious clients.
arXiv Detail & Related papers (2021-07-07T15:42:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.