論文の概要: HuDEx: Integrating Hallucination Detection and Explainability for Enhancing the Reliability of LLM responses
- arxiv url: http://arxiv.org/abs/2502.08109v1
- Date: Wed, 12 Feb 2025 04:17:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-13 13:50:43.376710
- Title: HuDEx: Integrating Hallucination Detection and Explainability for Enhancing the Reliability of LLM responses
- Title(参考訳): HuDEx: LLM応答の信頼性を高めるための幻覚検出と説明可能性の統合
- Authors: Sujeong Lee, Hayoung Lee, Seongsoo Heo, Wonik Choi,
- Abstract要約: 本稿では,HuDExと命名された幻覚検出モデルについて説明する。
提案モデルでは,検出を説明と統合する新たなアプローチを提供し,ユーザとLLM自体がエラーを理解し,低減することができる。
- 参考スコア(独自算出の注目度): 0.12499537119440242
- License:
- Abstract: Recent advances in large language models (LLMs) have shown promising improvements, often surpassing existing methods across a wide range of downstream tasks in natural language processing. However, these models still face challenges, which may hinder their practical applicability. For example, the phenomenon of hallucination is known to compromise the reliability of LLMs, especially in fields that demand high factual precision. Current benchmarks primarily focus on hallucination detection and factuality evaluation but do not extend beyond identification. This paper proposes an explanation enhanced hallucination-detection model, coined as HuDEx, aimed at enhancing the reliability of LLM-generated responses by both detecting hallucinations and providing detailed explanations. The proposed model provides a novel approach to integrate detection with explanations, and enable both users and the LLM itself to understand and reduce errors. Our measurement results demonstrate that the proposed model surpasses larger LLMs, such as Llama3 70B and GPT-4, in hallucination detection accuracy, while maintaining reliable explanations. Furthermore, the proposed model performs well in both zero-shot and other test environments, showcasing its adaptability across diverse benchmark datasets. The proposed approach further enhances the hallucination detection research by introducing a novel approach to integrating interpretability with hallucination detection, which further enhances the performance and reliability of evaluating hallucinations in language models.
- Abstract(参考訳): 大規模言語モデル(LLM)の最近の進歩は有望な改善を示し、しばしば自然言語処理における幅広い下流タスクにまたがる既存の手法を超越している。
しかし、これらのモデルは依然として課題に直面しており、実用性に支障をきたす可能性がある。
例えば、幻覚現象はLLMの信頼性を損なうことが知られている。
現在のベンチマークは主に幻覚検出と事実性評価に重点を置いているが、識別を超えて拡張はしていない。
本稿では,HuDExとよばれる幻覚検出モデルを提案する。
提案モデルでは,検出を説明と統合する新たなアプローチを提供し,ユーザとLLM自体がエラーを理解し,低減することができる。
その結果,Llama3 70B や GPT-4 などのより大きな LLM を幻覚検出精度で上回り,信頼性の高い説明を維持した。
さらに、提案モデルはゼロショットおよび他のテスト環境でも良好に動作し、多様なベンチマークデータセット間で適応性を示す。
提案手法は,幻覚検出と解釈可能性を統合する新たな手法を導入することにより,幻覚検出研究をさらに強化し,言語モデルにおける幻覚評価の性能と信頼性をさらに向上させる。
関連論文リスト
- REFIND: Retrieval-Augmented Factuality Hallucination Detection in Large Language Models [15.380441563675243]
大規模言語モデル(LLM)における幻覚は、質問応答のような知識集約的なタスクにおいて、その信頼性を著しく制限する。
本稿では, 抽出した文書を直接利用して, LLM出力内のハロゲン化スパンを検出する新しいフレームワークREFINDを紹介する。
REFINDは低リソース設定を含む9つの言語で堅牢性を示し、ベースラインモデルではかなり優れていた。
論文 参考訳(メタデータ) (2025-02-19T10:59:05Z) - A Debate-Driven Experiment on LLM Hallucinations and Accuracy [7.821303946741665]
本研究では,大規模言語モデル(LLM)における幻覚現象について検討する。
GPT-4o-Miniモデルの複数のインスタンスは、TrathfulQAデータセットからの質問によって引き起こされた議論のような相互作用に関与している。
1つのモデルは、もっともらしいが偽の答えを生成するように故意に指示され、他のモデルは真に応答するように要求される。
論文 参考訳(メタデータ) (2024-10-25T11:41:27Z) - Iter-AHMCL: Alleviate Hallucination for Large Language Model via Iterative Model-level Contrastive Learning [16.883679810267342]
幻覚に対処するための反復モデルレベルのコントラスト学習(Iter-AHMCL)
本稿では,幻覚に対処するイテレーティブモデルレベルのコントラスト学習(Iter-AHMCL)を提案する。
論文 参考訳(メタデータ) (2024-10-16T00:15:40Z) - SLM Meets LLM: Balancing Latency, Interpretability and Consistency in Hallucination Detection [10.54378596443678]
大規模言語モデル(LLM)は高い能力を持つが、リアルタイムアプリケーションではレイテンシの問題に直面している。
本研究では,実効的なプロンプト技術の導入により,実時間で解釈可能な幻覚検出を最適化する。
論文 参考訳(メタデータ) (2024-08-22T22:13:13Z) - PoLLMgraph: Unraveling Hallucinations in Large Language Models via State Transition Dynamics [51.17512229589]
PoLLMgraphは、大規模言語モデルのためのモデルベースのホワイトボックス検出および予測手法である。
LLMの内部状態遷移ダイナミクスを解析することにより,幻覚を効果的に検出できることを示す。
我々の研究は、LLMのモデルベースのホワイトボックス分析の新しい手法を開拓し、LLMの振る舞いの複雑なダイナミクスをさらに探求し、理解し、洗練する研究コミュニティを動機付けている。
論文 参考訳(メタデータ) (2024-04-06T20:02:20Z) - IBD: Alleviating Hallucinations in Large Vision-Language Models via
Image-Biased Decoding [37.16880672402059]
言語的先行性への過度な依存は幻覚に繋がる重要な要因として認識されている。
本稿では,新しい画像バイアスデコーディング手法を導入することにより,この問題を軽減することを提案する。
提案手法は,従来のLVLMと画像バイアスLVLMの予測を対比することにより,次の確率分布を導出する。
論文 参考訳(メタデータ) (2024-02-28T16:57:22Z) - Retrieve Only When It Needs: Adaptive Retrieval Augmentation for Hallucination Mitigation in Large Language Models [68.91592125175787]
幻覚は、大規模言語モデル(LLM)の実践的実装において重要な課題となる。
本稿では,幻覚に対処するための選択的検索拡張プロセスにより,Lowenを改良する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2024-02-16T11:55:40Z) - Improving Factual Consistency of News Summarization by Contrastive Preference Optimization [65.11227166319546]
大規模言語モデル(LLM)は、本来の記事と現実的に矛盾する要約を生成する。
これらの幻覚は、従来の方法による検出が困難である。
本稿では,LLMの適合性を解消し,忠実で偽のコンテンツを生成するコントラスト優先最適化(CPO)を提案する。
論文 参考訳(メタデータ) (2023-10-30T08:40:16Z) - AutoHall: Automated Hallucination Dataset Generation for Large Language Models [56.92068213969036]
本稿では,AutoHallと呼ばれる既存のファクトチェックデータセットに基づいて,モデル固有の幻覚データセットを自動的に構築する手法を提案する。
また,自己コントラディションに基づくゼロリソース・ブラックボックス幻覚検出手法を提案する。
論文 参考訳(メタデータ) (2023-09-30T05:20:02Z) - Siren's Song in the AI Ocean: A Survey on Hallucination in Large
Language Models [116.01843550398183]
大規模言語モデル(LLM)は、様々な下流タスクで顕著な機能を示している。
LLMは時折、ユーザ入力から分岐するコンテンツを生成し、以前生成されたコンテキストと矛盾する。
論文 参考訳(メタデータ) (2023-09-03T16:56:48Z) - A Stitch in Time Saves Nine: Detecting and Mitigating Hallucinations of
LLMs by Validating Low-Confidence Generation [76.34411067299331]
大規模な言語モデルは、しばしば信頼性を著しく損なう「ハロシン化」する傾向がある。
生成過程における幻覚を積極的に検出・緩和する手法を提案する。
提案手法は, GPT-3.5モデルの幻覚を平均47.5%から14.5%に低減する。
論文 参考訳(メタデータ) (2023-07-08T14:25:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。