論文の概要: Iter-AHMCL: Alleviate Hallucination for Large Language Model via Iterative Model-level Contrastive Learning
- arxiv url: http://arxiv.org/abs/2410.12130v1
- Date: Wed, 16 Oct 2024 00:15:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:44:28.660167
- Title: Iter-AHMCL: Alleviate Hallucination for Large Language Model via Iterative Model-level Contrastive Learning
- Title(参考訳): Iter-AHMCL:反復モデルレベルのコントラスト学習による大規模言語モデルのハロシン化の軽減
- Authors: Huiwen Wu, Xiaohan Li, Xiaogang Xu, Jiafei Wu, Deyi Zhang, Zhe Liu,
- Abstract要約: 幻覚に対処するための反復モデルレベルのコントラスト学習(Iter-AHMCL)
本稿では,幻覚に対処するイテレーティブモデルレベルのコントラスト学習(Iter-AHMCL)を提案する。
- 参考スコア(独自算出の注目度): 16.883679810267342
- License:
- Abstract: The development of Large Language Models (LLMs) has significantly advanced various AI applications in commercial and scientific research fields, such as scientific literature summarization, writing assistance, and knowledge graph construction. However, a significant challenge is the high risk of hallucination during LLM inference, which can lead to security concerns like factual inaccuracies, inconsistent information, and fabricated content. To tackle this issue, it is essential to develop effective methods for reducing hallucination while maintaining the original capabilities of the LLM. This paper introduces a novel approach called Iterative Model-level Contrastive Learning (Iter-AHMCL) to address hallucination. This method modifies the representation layers of pre-trained LLMs by using contrastive `positive' and `negative' models, trained on data with and without hallucinations. By leveraging the differences between these two models, we create a more straightforward pathway to eliminate hallucinations, and the iterative nature of contrastive learning further enhances performance. Experimental validation on four pre-trained foundation LLMs (LLaMA2, Alpaca, LLaMA3, and Qwen) finetuning with a specially designed dataset shows that our approach achieves an average improvement of 10.1 points on the TruthfulQA benchmark. Comprehensive experiments demonstrate the effectiveness of Iter-AHMCL in reducing hallucination while maintaining the general capabilities of LLMs.
- Abstract(参考訳): LLM(Large Language Models)の開発は、科学文献の要約、執筆支援、知識グラフ構築など、商業および科学研究分野における様々なAI応用を著しく進歩させてきた。
しかし、重要な課題は、LCM推論中の幻覚のリスクが高いことであり、これは、事実的不正確性、一貫性のない情報、製造されたコンテンツといったセキュリティ上の懸念を引き起こす可能性がある。
この問題に対処するためには, LLMの本来の能力を維持しつつ, 幻覚を抑える効果的な方法を開発することが不可欠である。
本稿では,幻覚に対処するイテレーティブモデルレベルのコントラスト学習(Iter-AHMCL)を提案する。
本手法は, 幻覚を伴わないデータに基づいて学習した, 対照的な「正」と「負」のモデルを用いて, 事前学習したLLMの表現層を修飾する。
これら2つのモデルの違いを活用することで、幻覚をなくすためのより直接的な経路を作り、コントラスト学習の反復性によりパフォーマンスがさらに向上する。
特別に設計されたデータセットを用いた4つの事前学習基礎 LLM (LLaMA2, Alpaca, LLaMA3, Qwen) の微調整実験により, 提案手法が TruthfulQA ベンチマークで平均 10.1 点向上を達成したことを示す。
総合的な実験は、LLMの一般的な能力を維持しながら幻覚を減少させるイタ-AHMCLの有効性を実証する。
関連論文リスト
- A Debate-Driven Experiment on LLM Hallucinations and Accuracy [7.821303946741665]
本研究では,大規模言語モデル(LLM)における幻覚現象について検討する。
GPT-4o-Miniモデルの複数のインスタンスは、TrathfulQAデータセットからの質問によって引き起こされた議論のような相互作用に関与している。
1つのモデルは、もっともらしいが偽の答えを生成するように故意に指示され、他のモデルは真に応答するように要求される。
論文 参考訳(メタデータ) (2024-10-25T11:41:27Z) - Investigating the Role of Prompting and External Tools in Hallucination Rates of Large Language Models [0.0]
LLM(Large Language Models)は、人間の可読テキストの広範なコーパスに基づいて訓練された強力な計算モデルであり、汎用的な言語理解と生成を可能にする。
これらの成功にもかかわらず、LLMは幻覚と呼ばれる不正確さをしばしば生み出す。
本稿では,LLMにおける幻覚の低減を目的とした,異なるプロンプト戦略とフレームワークの実証評価を行う。
論文 参考訳(メタデータ) (2024-10-25T08:34:53Z) - Mitigating Hallucinations of Large Language Models in Medical Information Extraction via Contrastive Decoding [92.32881381717594]
医療情報抽出タスクにおける幻覚の問題を解決するために,ALCD(ALternate Contrastive Decoding)を導入する。
ALCDは, 従来の復号法に比べて幻覚の解消に有意な改善が見られた。
論文 参考訳(メタデータ) (2024-10-21T07:19:19Z) - Understanding Privacy Risks of Embeddings Induced by Large Language Models [75.96257812857554]
大きな言語モデルは、人工知能の初期の兆候を示すが、幻覚に苦しむ。
1つの有望な解決策は、外部知識を埋め込みとして保存し、LLMを検索強化世代に支援することである。
近年の研究では、事前学習された言語モデルによるテキスト埋め込みから、元のテキストを部分的に再構築できることが実験的に示されている。
論文 参考訳(メタデータ) (2024-04-25T13:10:48Z) - PoLLMgraph: Unraveling Hallucinations in Large Language Models via State Transition Dynamics [51.17512229589]
PoLLMgraphは、大規模言語モデルのためのモデルベースのホワイトボックス検出および予測手法である。
LLMの内部状態遷移ダイナミクスを解析することにより,幻覚を効果的に検出できることを示す。
我々の研究は、LLMのモデルベースのホワイトボックス分析の新しい手法を開拓し、LLMの振る舞いの複雑なダイナミクスをさらに探求し、理解し、洗練する研究コミュニティを動機付けている。
論文 参考訳(メタデータ) (2024-04-06T20:02:20Z) - Mitigating Object Hallucination in Large Vision-Language Models via
Classifier-Free Guidance [56.04768229686853]
LVLM(Large Vision-Language Models)は、画像中の既存の物体を幻覚させる傾向がある。
私たちはclassifieR-Free guIdaNcE (MARINE)を介してMitigating HallucinAtionと呼ばれるフレームワークを導入する。
MARINEはトレーニングフリーかつAPIフリーであり、生成プロセス中のオブジェクト幻覚を効果的かつ効率的に低減することができる。
論文 参考訳(メタデータ) (2024-02-13T18:59:05Z) - Alleviating Hallucinations of Large Language Models through Induced
Hallucinations [67.35512483340837]
大規模言語モデル(LLM)は、不正確な情報や製造された情報を含む応答を生成するために観察されている。
幻覚を緩和するための単純なtextitInduce-then-Contrast Decoding (ICD) 戦略を提案する。
論文 参考訳(メタデータ) (2023-12-25T12:32:49Z) - Improving Factual Consistency of Text Summarization by Adversarially
Decoupling Comprehension and Embellishment Abilities of LLMs [67.56087611675606]
大規模言語モデル(LLM)は、本来の記事と現実的に矛盾する要約を生成する。
これらの幻覚は、従来の方法による検出が困難である。
LLM(DECENT)の能力を阻害する逆デカップリング法を提案する。
論文 参考訳(メタデータ) (2023-10-30T08:40:16Z) - Zero-Resource Hallucination Prevention for Large Language Models [45.4155729393135]
ハロシン化(Hallucination)とは、大規模言語モデル(LLM)が事実的に不正確な情報を生成する事例を指す。
本稿では,SELF-FAMILIARITYと呼ばれる,入力命令に含まれる概念に対するモデルの親しみ度を評価する新しい自己評価手法を提案する。
4つの異なる大言語モデルでSELF-FAMILIARITYを検証し、既存の手法と比較して一貫して優れた性能を示す。
論文 参考訳(メタデータ) (2023-09-06T01:57:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。