論文の概要: Neuromorphic Digital-Twin-based Controller for Indoor Multi-UAV Systems Deployment
- arxiv url: http://arxiv.org/abs/2502.08115v1
- Date: Wed, 12 Feb 2025 04:36:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-13 13:49:55.849795
- Title: Neuromorphic Digital-Twin-based Controller for Indoor Multi-UAV Systems Deployment
- Title(参考訳): 屋内マルチUAVシステム展開のためのニューロモルフィックディジタルツイン制御系
- Authors: Reza Ahmadvand, Sarah Safura Sharif, Yaser Mike Banad,
- Abstract要約: 提案アーキテクチャは,クラウドベースコントローラが生成する最適制御信号を学習する個別スパイキングニューラルネットワーク(SNN)を,各UAVに装備する。
システムは複雑な都市環境における高度な形成制御と障害物回避を実現する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Presented study introduces a novel distributed cloud-edge framework for autonomous multi-UAV systems that combines the computational efficiency of neuromorphic computing with nature-inspired control strategies. The proposed architecture equips each UAV with an individual Spiking Neural Network (SNN) that learns to reproduce optimal control signals generated by a cloud-based controller, enabling robust operation even during communication interruptions. By integrating spike coding with nature-inspired control principles inspired by Tilapia fish territorial behavior, our system achieves sophisticated formation control and obstacle avoidance in complex urban environments. The distributed architecture leverages cloud computing for complex calculations while maintaining local autonomy through edge-based SNNs, significantly reducing energy consumption and computational overhead compared to traditional centralized approaches. Our framework addresses critical limitations of conventional methods, including the dependency on pre-modeled environments, computational intensity of traditional methods, and local minima issues in potential field approaches. Simulation results demonstrate the system's effectiveness across two different scenarios. First, the indoor deployment of a multi-UAV system made-up of 15 UAVs. Then the collision-free formation control of a moving UAV flock including 6 UAVs considering the obstacle avoidance. Owing to the sparsity of spiking patterns, and the event-based nature of SNNs in average for the whole group of UAVs, the framework achieves almost 90% reduction in computational burden compared to traditional von Neumann architectures implementing traditional artificial neural networks.
- Abstract(参考訳): 本稿では,ニューロモルフィックコンピューティングの計算効率と自然に着想を得た制御戦略を組み合わせた,自律型マルチUAVシステムのための分散クラウドエッジフレームワークを提案する。
提案アーキテクチャは各UAVに個別のスパイキングニューラルネットワーク(SNN)を装備し,クラウドベースの制御器が生成する最適な制御信号を再現し,通信中断時にも堅牢な動作を可能にする。
タイラピア魚類の領有行動に触発された自然に誘発される制御原理とスパイク符号化を統合することにより,複雑な都市環境における高度な形成制御と障害物回避を実現する。
分散アーキテクチャは、エッジベースのSNNを通じて局所的な自律性を維持しながら、複雑な計算にクラウドコンピューティングを活用する。
本フレームワークは,事前モデル化環境への依存,従来の手法の計算強度,潜在的フィールドアプローチにおける局所最小化問題など,従来の手法の限界に対処する。
シミュレーションの結果は、システムの有効性を2つの異なるシナリオで示している。
第一に、15機のUAVからなるマルチUAVシステムの屋内展開である。
そして、障害物回避を考慮した6つのUAVを含む移動UAVフロックの衝突のない形成制御を行う。
スパイクパターンの広さと、UAV全体のSNNのイベントベースの性質により、このフレームワークは従来の人工ニューラルネットワークを実装したフォン・ノイマンアーキテクチャと比較して、計算負担の約90%の削減を実現している。
関連論文リスト
- Aerial Reliable Collaborative Communications for Terrestrial Mobile Users via Evolutionary Multi-Objective Deep Reinforcement Learning [59.660724802286865]
無人航空機(UAV)は、地上通信を改善するための航空基地局(BS)として登場した。
この作業では、UAV対応仮想アンテナアレイによる協調ビームフォーミングを使用して、UAVから地上モバイルユーザへの伝送性能を向上させる。
論文 参考訳(メタデータ) (2025-02-09T09:15:47Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - Reservoir computing for system identification and predictive control with limited data [3.1484174280822845]
我々は、ベンチマーク制御システムの力学を学習し、モデル予測制御(MPC)の代理モデルとして機能するRNN変種の評価を行う。
エコー状態ネットワーク(ESN)は、計算複雑性の低減、より有効な予測時間、MPC目的関数のコスト削減など、競合するアーキテクチャよりも様々な利点がある。
論文 参考訳(メタデータ) (2024-10-23T21:59:07Z) - Building Hybrid B-Spline And Neural Network Operators [0.0]
制御システムはサイバー物理システム(CPS)の安全性を確保するために不可欠である
本稿では,B-スプラインの帰納バイアスとデータ駆動型ニューラルネットワークを組み合わせることで,CPS行動のリアルタイム予測を容易にする手法を提案する。
論文 参考訳(メタデータ) (2024-06-06T21:54:59Z) - Auto-Train-Once: Controller Network Guided Automatic Network Pruning from Scratch [72.26822499434446]
オートトレインオース (Auto-Train-Once, ATO) は、DNNの計算コストと記憶コストを自動的に削減するために設計された、革新的なネットワークプルーニングアルゴリズムである。
総合的な収束解析と広範な実験を行い,本手法が様々なモデルアーキテクチャにおける最先端性能を実現することを示す。
論文 参考訳(メタデータ) (2024-03-21T02:33:37Z) - From NeurODEs to AutoencODEs: a mean-field control framework for
width-varying Neural Networks [68.8204255655161]
本稿では,動的に駆動する制御フィールドをベースとした,AutoencODEと呼ばれる新しいタイプの連続時間制御システムを提案する。
損失関数が局所凸な領域では,多くのアーキテクチャが復元可能であることを示す。
論文 参考訳(メタデータ) (2023-07-05T13:26:17Z) - Joint Cluster Head Selection and Trajectory Planning in UAV-Aided IoT
Networks by Reinforcement Learning with Sequential Model [4.273341750394231]
我々は、UAVの軌道を共同で設計し、インターネット・オブ・シングス・ネットワークでクラスタ・ヘッドを選択するという問題を定式化する。
本稿では,シーケンス・ツー・シーケンス・ニューラルネットワークで表されるポリシーを効果的に学習できるシーケンシャルモデル戦略を備えた,新しい深層強化学習(DRL)を提案する。
シミュレーションにより,提案したDRL法は,より少ないエネルギー消費を必要とするUAVの軌道を見つけることができることを示した。
論文 参考訳(メタデータ) (2021-12-01T07:59:53Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z) - Distributed CNN Inference on Resource-Constrained UAVs for Surveillance
Systems: Design and Optimization [43.9909417652678]
無人航空機(UAV)は、広い地域をカバーし、困難で危険な目標地域にアクセスする能力のため、ここ数年で大きな関心を集めている。
コンピュータビジョンと機械学習の進歩により、UAVは幅広いソリューションやアプリケーションに採用されている。
ディープニューラルネットワーク(DNN)は、それらがオンボードで実行されるのを防ぐ、より深く複雑なモデルに向かって進んでいる。
論文 参考訳(メタデータ) (2021-05-23T20:19:43Z) - Jamming-Resilient Path Planning for Multiple UAVs via Deep Reinforcement
Learning [1.2330326247154968]
無人航空機(UAV)は無線ネットワークの不可欠な部分であると期待されている。
本論文では,複数のセルコネクテッドUAVの衝突のない経路を探索する。
本稿では,オンライン信号対干渉+雑音比マッピングを用いたオフライン時間差学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-04-09T16:52:33Z) - Deep Multi-Task Learning for Cooperative NOMA: System Design and
Principles [52.79089414630366]
我々は,近年のディープラーニング(DL)の進歩を反映した,新しいディープ・コラボレーティブなNOMAスキームを開発する。
我々は,システム全体を包括的に最適化できるように,新しいハイブリッドカスケードディープニューラルネットワーク(DNN)アーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-07-27T12:38:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。