論文の概要: Building Hybrid B-Spline And Neural Network Operators
- arxiv url: http://arxiv.org/abs/2406.06611v1
- Date: Thu, 6 Jun 2024 21:54:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 21:04:26.895948
- Title: Building Hybrid B-Spline And Neural Network Operators
- Title(参考訳): ハイブリッドB-Splineとニューラルネットワークオペレータの構築
- Authors: Raffaele Romagnoli, Jasmine Ratchford, Mark H. Klein,
- Abstract要約: 制御システムはサイバー物理システム(CPS)の安全性を確保するために不可欠である
本稿では,B-スプラインの帰納バイアスとデータ駆動型ニューラルネットワークを組み合わせることで,CPS行動のリアルタイム予測を容易にする手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Control systems are indispensable for ensuring the safety of cyber-physical systems (CPS), spanning various domains such as automobiles, airplanes, and missiles. Safeguarding CPS necessitates runtime methodologies that continuously monitor safety-critical conditions and respond in a verifiably safe manner. A fundamental aspect of many safety approaches involves predicting the future behavior of systems. However, achieving this requires accurate models that can operate in real time. Motivated by DeepONets, we propose a novel strategy that combines the inductive bias of B-splines with data-driven neural networks to facilitate real-time predictions of CPS behavior. We introduce our hybrid B-spline neural operator, establishing its capability as a universal approximator and providing rigorous bounds on the approximation error. These findings are applicable to a broad class of nonlinear autonomous systems and are validated through experimentation on a controlled 6-degree-of-freedom (DOF) quadrotor with a 12 dimensional state space. Furthermore, we conduct a comparative analysis of different network architectures, specifically fully connected networks (FCNN) and recurrent neural networks (RNN), to elucidate the practical utility and trade-offs associated with each architecture in real-world scenarios.
- Abstract(参考訳): 制御システムは、自動車、航空機、ミサイルといった様々な領域にまたがるサイバー物理システムの安全性を確保するために不可欠である。
CPSの保護は、安全クリティカルな条件を継続的に監視し、確実に安全な方法で応答するランタイム方法論を必要とする。
多くの安全アプローチの基本的な側面は、システムの将来の振る舞いを予測することである。
しかし、これを実現するには、リアルタイムに動作可能な正確なモデルが必要である。
本稿では,B-スプラインの誘導バイアスとデータ駆動型ニューラルネットワークを組み合わせて,CPS行動のリアルタイム予測を容易にする手法を提案する。
我々は,我々のハイブリッドB-スプラインニューラル演算子を導入し,普遍近似器としての機能を確立し,近似誤差に厳密な境界を与える。
これらの知見は、幅広い非線形自律システムに適用可能であり、12次元状態空間を持つ制御された6自由度四重極(DOF)の実験によって検証される。
さらに、実世界のシナリオにおいて、各アーキテクチャに関連する実用性とトレードオフを明らかにするために、異なるネットワークアーキテクチャ、特に完全連結ネットワーク(FCNN)とリカレントニューラルネットワーク(RNN)の比較分析を行う。
関連論文リスト
- Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - A Variational Autoencoder Framework for Robust, Physics-Informed
Cyberattack Recognition in Industrial Cyber-Physical Systems [2.051548207330147]
我々は、産業制御システムに対する秘密攻撃と呼ばれるサイバー攻撃を検出し、診断し、ローカライズするために使用できるデータ駆動フレームワークを開発する。
このフレームワークは、可変オートエンコーダ(VAE)、リカレントニューラルネットワーク(RNN)、ディープニューラルネットワーク(DNN)を組み合わせたハイブリッド設計である。
論文 参考訳(メタデータ) (2023-10-10T19:07:53Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
本稿では,DNNに基づく動的モデリングの信頼性を向上させるために,ConCerNetという新しい学習フレームワークを提案する。
本手法は, 座標誤差と保存量の両方において, ベースラインニューラルネットワークよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-02-11T21:07:30Z) - Interpretable Self-Aware Neural Networks for Robust Trajectory
Prediction [50.79827516897913]
本稿では,意味概念間で不確実性を分散する軌道予測のための解釈可能なパラダイムを提案する。
実世界の自動運転データに対する我々のアプローチを検証し、最先端のベースラインよりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-11-16T06:28:20Z) - Anomaly Detection in Automatic Generation Control Systems Based on
Traffic Pattern Analysis and Deep Transfer Learning [0.38073142980733]
現代の高度に相互接続された電力グリッドでは、電力グリッドの安定性を維持するために自動生成制御(AGC)が不可欠である。
情報通信技術(ICT)システムへのAGCシステムの依存は、様々なサイバー攻撃に対して脆弱である。
情報フロー(IF)分析と異常検出は、サイバー攻撃者がサイバー物理的電力システムを不安定に駆動することを防ぐために最重要となった。
論文 参考訳(メタデータ) (2022-09-16T17:52:42Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - An Online Ensemble Learning Model for Detecting Attacks in Wireless
Sensor Networks [0.0]
我々は、アンサンブル学習として知られる重要な機械学習の概念を適用して、インテリジェントで効率的で、かつ、高機能な侵入検知システムを開発する。
本稿では,感覚データ解析における同種・異種のオンラインアンサンブルの応用について検討する。
提案されたオンラインアンサンブルのうち、アダプティブ・ランダム・フォレスト(ARF)とHoeffding Adaptive Tree(HAT)アルゴリズムを組み合わせた異種アンサンブルと、10モデルからなる同種アンサンブルHATは、それぞれ96.84%と97.2%という高い検出率を達成した。
論文 参考訳(メタデータ) (2022-04-28T23:10:47Z) - Distributed neural network control with dependability guarantees: a
compositional port-Hamiltonian approach [0.0]
大規模なサイバー物理システムは、制御ポリシーが分散されていること、すなわち、ローカルなリアルタイム測定と近隣エージェントとの通信にのみ依存することを要求する。
最近の研究でニューラルネットワーク(NN)分散コントローラのトレーニングが提案されている。
NNコントローラの主な課題は、トレーニング中と後、すなわちクローズドループシステムは不安定であり、勾配の消失と爆発によってトレーニングが失敗する可能性があることである。
論文 参考訳(メタデータ) (2021-12-16T17:37:11Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
本稿では、異なる安全でない入力に対してモデルを強化するために、カバレッジパラダイムに基づく軽量な監視アーキテクチャを提案する。
実験結果から,提案手法は強力な対向例とアウト・オブ・ディストリビューション・インプットの両方を検出するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2021-01-28T16:38:26Z) - Deep Learning based Covert Attack Identification for Industrial Control
Systems [5.299113288020827]
我々は、スマートグリッドに対する秘密攻撃と呼ばれるサイバー攻撃を検出し、診断し、ローカライズするために使用できるデータ駆動フレームワークを開発した。
このフレームワークは、オートエンコーダ、リカレントニューラルネットワーク(RNN)とLong-Short-Term-Memory層、Deep Neural Network(DNN)を組み合わせたハイブリッド設計である。
論文 参考訳(メタデータ) (2020-09-25T17:48:43Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
本稿では,モデル予測制御(MPC)の定式化を拡張したオンライン経路計画アーキテクチャを提案する。
我々のアルゴリズムは、状態推定の共分散を推論するリカレントニューラルネットワーク(RNN)とオブジェクト検出パイプラインを組み合わせる。
本手法のロバスト性は, 複雑な四足歩行ロボットの力学で検証され, ほとんどのロボットプラットフォームに適用可能である。
論文 参考訳(メタデータ) (2020-07-28T07:34:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。