論文の概要: ActiveSSF: An Active-Learning-Guided Self-Supervised Framework for Long-Tailed Megakaryocyte Classification
- arxiv url: http://arxiv.org/abs/2502.08200v2
- Date: Tue, 20 May 2025 17:03:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-21 14:49:51.780358
- Title: ActiveSSF: An Active-Learning-Guided Self-Supervised Framework for Long-Tailed Megakaryocyte Classification
- Title(参考訳): ActiveSSF: 長期のMegakaryocyte分類のためのアクティブラーニングガイド付きセルフスーパービジョンフレームワーク
- Authors: Linghao Zhuang, Ying Zhang, Gege Yuan, Xingyue Zhao, Zhiping Jiang,
- Abstract要約: 本研究では,能動学習と自己教師付き事前学習を統合したActiveSSFフレームワークを提案する。
臨床用巨核球データセットによる実験結果から,ActiveSSFは最先端の性能を発揮することが示された。
- 参考スコア(独自算出の注目度): 3.6535793744942318
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Precise classification of megakaryocytes is crucial for diagnosing myelodysplastic syndromes. Although self-supervised learning has shown promise in medical image analysis, its application to classifying megakaryocytes in stained slides faces three main challenges: (1) pervasive background noise that obscures cellular details, (2) a long-tailed distribution that limits data for rare subtypes, and (3) complex morphological variations leading to high intra-class variability. To address these issues, we propose the ActiveSSF framework, which integrates active learning with self-supervised pretraining. Specifically, our approach employs Gaussian filtering combined with K-means clustering and HSV analysis (augmented by clinical prior knowledge) for accurate region-of-interest extraction; an adaptive sample selection mechanism that dynamically adjusts similarity thresholds to mitigate class imbalance; and prototype clustering on labeled samples to overcome morphological complexity. Experimental results on clinical megakaryocyte datasets demonstrate that ActiveSSF not only achieves state-of-the-art performance but also significantly improves recognition accuracy for rare subtypes. Moreover, the integration of these advanced techniques further underscores the practical potential of ActiveSSF in clinical settings.
- Abstract(参考訳): 骨髄異形成症候群の診断には巨核球の精密な分類が重要である。
自己教師型学習は, 医用画像解析において有望であるが, 染色スライス中の巨核球の分類への応用には, 1) 細胞の詳細を隠蔽する広範背景ノイズ, (2) 稀なサブタイプのデータを制限する長い尾分布, (3) クラス内変動をもたらす複雑な形態変化の3つの課題がある。
これらの課題に対処するために,能動学習と自己教師付き事前学習を統合したActiveSSFフレームワークを提案する。
具体的には,K-meansクラスタリングとHSV分析を併用したガウスフィルタを用いて,関心領域抽出,クラス不均衡を軽減するために類似度閾値を動的に調整する適応型サンプル選択機構,およびラベル付きサンプルのプロトタイプクラスタリングを用いて,形態的複雑性を克服する。
臨床メガカリーサイトデータセットによる実験結果から,ActiveSSFは最先端の性能を達成できるだけでなく,稀なサブタイプの認識精度も著しく向上することが示された。
さらに, これらの技術の統合は, 臨床現場におけるActiveSSFの実用的可能性をさらに浮き彫りにする。
関連論文リスト
- A Nasal Cytology Dataset for Object Detection and Deep Learning [0.0]
NCD (Nasal Cytology dataset) というサイ細胞野画像の最初のデータセットを提示する。
鼻粘膜に分布する細胞型の実際の分布は複製され、臨床患者のスライドから画像を集め、それぞれの細胞に手動で注釈を付ける。
この研究は、鼻粘膜細胞の自動検出と分類を支援する新しい機械学習ベースのアプローチを提案することで、オープンな課題のいくつかに寄与する。
論文 参考訳(メタデータ) (2024-04-21T19:02:38Z) - UniCell: Universal Cell Nucleus Classification via Prompt Learning [76.11864242047074]
ユニバーサル細胞核分類フレームワーク(UniCell)を提案する。
異なるデータセットドメインから対応する病理画像のカテゴリを均一に予測するために、新しいプロンプト学習機構を採用している。
特に,本フレームワークでは,原子核検出と分類のためのエンドツーエンドアーキテクチャを採用し,フレキシブルな予測ヘッドを用いて様々なデータセットを適応する。
論文 参考訳(メタデータ) (2024-02-20T11:50:27Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
本研究は, スマートフォンで撮影した画像と本質的な臨床および人口統計情報を統合することで, 皮膚病変を分類する新しいマルチモーダル手法を提案する。
この手法の特徴は、超高解像度画像予測に焦点を当てた補助的なタスクの統合である。
PAD-UFES20データセットを用いて,様々なディープラーニングアーキテクチャを用いて実験を行った。
論文 参考訳(メタデータ) (2024-02-16T05:16:20Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
我々は,細胞間のトポロジ的特徴を効率的に捉えるために,注目度の高いグラフオートエンコーダを開発した。
クラスタリング過程において,両情報の集合を統合し,細胞と遺伝子の特徴を再構成し,識別的表現を生成する。
本研究は、細胞の特徴と分布に関する知見を高め、疾患の早期診断と治療の基礎となる。
論文 参考訳(メタデータ) (2023-11-28T09:14:55Z) - Successive Subspace Learning for Cardiac Disease Classification with
Two-phase Deformation Fields from Cine MRI [36.044984400761535]
本研究は,CVD分類のための軽量な逐次サブスペース学習フレームワークを提案する。
解釈可能なフィードフォワードデザインに基づいており、心房と組み合わせている。
3D CNNベースのアプローチと比較して、我々のフレームワークは140$times$より少ないパラメータで優れた分類性能を実現する。
論文 参考訳(メタデータ) (2023-01-21T15:00:59Z) - LifeLonger: A Benchmark for Continual Disease Classification [59.13735398630546]
MedMNISTコレクションの連続的な疾患分類のためのベンチマークであるLifeLongerを紹介する。
タスクとクラスでの病気の漸進的な学習は、モデルをスクラッチから再トレーニングすることなく、新しいサンプルを分類する問題に対処する。
クロスドメインインクリメンタル学習は、これまで得られた知識を維持しながら、異なる機関から派生したデータセットを扱う問題に対処する。
論文 参考訳(メタデータ) (2022-04-12T12:25:05Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
CT画像によるコロナウイルス病2019(COVID-19)の早期かつ正確な重症度評価は,集中治療単位のイベント推定に有効である。
ラベル付きデータを拡張し、分類モデルの一般化能力を向上させるためには、複数のサイトからデータを集約する必要がある。
この課題は、軽度の感染症と重度の感染症の集団不均衡、部位間のドメイン分布の相違、不均一な特徴の存在など、いくつかの課題に直面する。
論文 参考訳(メタデータ) (2021-09-08T07:56:51Z) - Ensemble of CNN classifiers using Sugeno Fuzzy Integral Technique for
Cervical Cytology Image Classification [1.6986898305640261]
頸がんの単細胞画像とスライド画像の分類を完全自動化するコンピュータ支援診断ツールを提案する。
我々は、Sugeno Fuzzy Integralを使用して、Inception v3、DenseNet-161、ResNet-34という3つの人気のあるディープラーニングモデルの意思決定スコアをアンサンブルする。
論文 参考訳(メタデータ) (2021-08-21T08:41:41Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - Data Efficient and Weakly Supervised Computational Pathology on Whole
Slide Images [4.001273534300757]
計算病理学は、客観的診断、治療反応予測、臨床関連性の新たな形態学的特徴の同定を可能にする可能性がある。
ディープラーニングベースの計算病理学アプローチでは、完全に教師された設定でギガピクセル全体のスライド画像(WSI)のマニュアルアノテーションを必要とするか、弱い教師付き設定でスライドレベルのラベルを持つ何千ものWSIを必要とする。
ここでは、クラスタリングに制約のある複数のインスタンス学習について紹介する。
論文 参考訳(メタデータ) (2020-04-20T23:00:13Z) - An Efficient Framework for Automated Screening of Clinically Significant
Macular Edema [0.41998444721319206]
本研究は,臨床上重要な黄斑浮腫(CSME)の自動スクリーニングのための新しいアプローチを提案する。
提案手法は、トレーニング済みのディープニューラルネットワークとメタヒューリスティックな特徴選択を組み合わせたものである。
スクイードデータセットの効果を克服するために、機能領域のオーバーサンプリング技術が使用されている。
論文 参考訳(メタデータ) (2020-01-20T07:34:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。