論文の概要: Adaptable Cardiovascular Disease Risk Prediction from Heterogeneous Data using Large Language Models
- arxiv url: http://arxiv.org/abs/2505.24655v1
- Date: Fri, 30 May 2025 14:42:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-02 19:47:53.007186
- Title: Adaptable Cardiovascular Disease Risk Prediction from Heterogeneous Data using Large Language Models
- Title(参考訳): 大規模言語モデルを用いた不均一データからの適応型心血管疾患リスク予測
- Authors: Frederike Lübeck, Jonas Wildberger, Frederik Träuble, Maximilian Mordig, Sergios Gatidis, Andreas Krause, Bernhard Schölkopf,
- Abstract要約: AdaCVDは、英国バイオバンクから50万人以上の参加者を対象に、大規模な言語モデルに基づいて構築された適応可能なCVDリスク予測フレームワークである。
包括的かつ可変的な患者情報を柔軟に取り込み、構造化データと非構造化テキストの両方をシームレスに統合し、最小限の追加データを使用して新規患者の集団に迅速に適応する。
- 参考スコア(独自算出の注目度): 70.64969663547703
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Cardiovascular disease (CVD) risk prediction models are essential for identifying high-risk individuals and guiding preventive actions. However, existing models struggle with the challenges of real-world clinical practice as they oversimplify patient profiles, rely on rigid input schemas, and are sensitive to distribution shifts. We developed AdaCVD, an adaptable CVD risk prediction framework built on large language models extensively fine-tuned on over half a million participants from the UK Biobank. In benchmark comparisons, AdaCVD surpasses established risk scores and standard machine learning approaches, achieving state-of-the-art performance. Crucially, for the first time, it addresses key clinical challenges across three dimensions: it flexibly incorporates comprehensive yet variable patient information; it seamlessly integrates both structured data and unstructured text; and it rapidly adapts to new patient populations using minimal additional data. In stratified analyses, it demonstrates robust performance across demographic, socioeconomic, and clinical subgroups, including underrepresented cohorts. AdaCVD offers a promising path toward more flexible, AI-driven clinical decision support tools suited to the realities of heterogeneous and dynamic healthcare environments.
- Abstract(参考訳): 心血管疾患(CVD)のリスク予測モデルは、リスクの高い個人を特定し、予防行動を導くために不可欠である。
しかし、既存のモデルは、患者プロファイルを単純化し、厳格な入力スキーマに依存し、分散シフトに敏感な、現実的な臨床実践の課題に苦慮している。
我々は,英国バイオバンクから50万人以上の参加者を対象に,大規模言語モデルに基づく適応型CVDリスク予測フレームワークであるAdaCVDを開発した。
ベンチマーク比較では、AdaCVDは確立したリスクスコアと標準的な機械学習アプローチを超え、最先端のパフォーマンスを達成する。
それは、柔軟に包括的かつ可変的な患者情報を取り込み、構造化データと非構造化テキストの両方をシームレスに統合し、最小限の追加データを使用して、新しい患者集団に迅速に適応する。
階層化分析では、人口統計学、社会経済学、臨床サブグループにまたがる堅牢なパフォーマンスを示す。
AdaCVDは、異種および動的医療環境の現実に適した、より柔軟でAI駆動の臨床試験支援ツールへの、有望な道を提供する。
関連論文リスト
- Machine Learning Solutions Integrated in an IoT Healthcare Platform for Heart Failure Risk Stratification [3.952604803580729]
慢性心不全(HF)の管理は、現代医療において重要な課題である。
本稿では,HFリスクのある患者を識別するための機械学習(ML)技術に基づく予測モデルを提案する。
論文 参考訳(メタデータ) (2025-04-07T14:07:05Z) - TCKAN:A Novel Integrated Network Model for Predicting Mortality Risk in Sepsis Patients [0.0]
セプシスは世界的な健康上の脅威となり、毎年何百万人もの死者を出し、経済的にかなりのコストがかかる。
現在のメソッドは通常、定数、時間、ICDコードのいずれかの1種類のデータしか利用しない。
Time-Constant Kolmogorov-Arnold Network (TCKAN)は、時間的データ、定数データ、ICDコードを単一の予測モデルに統合する。
論文 参考訳(メタデータ) (2024-07-09T05:37:50Z) - TACCO: Task-guided Co-clustering of Clinical Concepts and Patient Visits for Disease Subtyping based on EHR Data [42.96821770394798]
TACCOは、EMHデータのハイパーグラフモデリングに基づいて、臨床概念と患者訪問のクラスターを共同で発見する新しいフレームワークである。
我々は,表現型分類と心血管リスク予測の下流臨床課題に対して,公共MIMIC-IIIデータセットとエモリー内部CRADLEデータセットを用いて実験を行った。
深層モデル解析,クラスタリング結果解析,臨床ケーススタディは,TACCOが提供した改良されたユーティリティと洞察に富んだ解釈をさらに検証する。
論文 参考訳(メタデータ) (2024-06-14T14:18:38Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Neurological Prognostication of Post-Cardiac-Arrest Coma Patients Using
EEG Data: A Dynamic Survival Analysis Framework with Competing Risks [4.487368901635044]
脳波データを用いた心停止後コマトース患者の神経学的予後の枠組みを提案する。
我々のフレームワークは、患者レベルの累積頻度関数を推定する形で競合するリスクをサポートする動的生存分析モデルを使用する。
我々は,922人の実際のデータセット上で競合するリスクをサポートする3つの既存動的生存分析モデルをベンチマークすることで,我々の枠組みを実証する。
論文 参考訳(メタデータ) (2023-08-17T03:46:23Z) - SANSformers: Self-Supervised Forecasting in Electronic Health Records
with Attention-Free Models [48.07469930813923]
本研究は,医療施設への患者訪問数を予測することにより,医療サービスの需要を予測することを目的とする。
SNSformerは、特定の帰納バイアスを設計し、EHRデータの特異な特徴を考慮に入れた、注意のない逐次モデルである。
本研究は, 各種患者集団を対象とした医療利用予測の修正における, 注意力のないモデルと自己指導型事前訓練の有望な可能性について考察した。
論文 参考訳(メタデータ) (2021-08-31T08:23:56Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。