Privacy amplification by random allocation
- URL: http://arxiv.org/abs/2502.08202v1
- Date: Wed, 12 Feb 2025 08:32:10 GMT
- Title: Privacy amplification by random allocation
- Authors: Vitaly Feldman, Moshe Shenfeld,
- Abstract summary: We consider the privacy guarantees of an algorithm in which a user's data is used in $k$ steps randomly and uniformly chosen from a sequence (or set) of $t$ differentially private steps.
We demonstrate that the privacy guarantees of this sampling scheme can be upper bound by the privacy guarantees of the well-studied independent (or Poisson) subsampling.
- Score: 18.231854497751137
- License:
- Abstract: We consider the privacy guarantees of an algorithm in which a user's data is used in $k$ steps randomly and uniformly chosen from a sequence (or set) of $t$ differentially private steps. We demonstrate that the privacy guarantees of this sampling scheme can be upper bound by the privacy guarantees of the well-studied independent (or Poisson) subsampling in which each step uses the user's data with probability $(1+ o(1))k/t $. Further, we provide two additional analysis techniques that lead to numerical improvements in some parameter regimes. The case of $k=1$ has been previously studied in the context of DP-SGD in Balle et al. (2020) and very recently in Chua et al. (2024). Privacy analysis of Balle et al. (2020) relies on privacy amplification by shuffling which leads to overly conservative bounds. Privacy analysis of Chua et al. (2024a) relies on Monte Carlo simulations that are computationally prohibitive in many practical scenarios and have additional inherent limitations.
Related papers
- Debiasing Functions of Private Statistics in Postprocessing [6.22153888560487]
We derive an unbiased estimator for private means when the size $n$ of the dataset is not publicly known.
We also apply our estimators to develop unbiased transformation mechanisms for per-record differential privacy.
arXiv Detail & Related papers (2025-02-18T22:16:37Z) - Optimized Tradeoffs for Private Prediction with Majority Ensembling [59.99331405291337]
We introduce the Data-dependent Randomized Response Majority (DaRRM) algorithm.
DaRRM is parameterized by a data-dependent noise function $gamma$, and enables efficient utility optimization over the class of all private algorithms.
We show that DaRRM provably enjoys a privacy gain of a factor of 2 over common baselines, with fixed utility.
arXiv Detail & Related papers (2024-11-27T00:48:48Z) - Avoiding Pitfalls for Privacy Accounting of Subsampled Mechanisms under Composition [13.192083588571384]
We consider the problem of computing tight privacy guarantees for the composition of subsampled differentially private mechanisms.
Recent algorithms can numerically compute the privacy parameters to arbitrary precision but must be carefully applied.
arXiv Detail & Related papers (2024-05-27T20:30:12Z) - Provable Privacy with Non-Private Pre-Processing [56.770023668379615]
We propose a general framework to evaluate the additional privacy cost incurred by non-private data-dependent pre-processing algorithms.
Our framework establishes upper bounds on the overall privacy guarantees by utilising two new technical notions.
arXiv Detail & Related papers (2024-03-19T17:54:49Z) - Privacy Profiles for Private Selection [21.162924003105484]
We work out an easy-to-use recipe that bounds privacy profiles of ReportNoisyMax and PrivateTuning using the privacy profiles of the base algorithms they corral.
Our approach improves over all regimes of interest and leads to substantial benefits in end-to-end private learning experiments.
arXiv Detail & Related papers (2024-02-09T08:31:46Z) - A Generalized Shuffle Framework for Privacy Amplification: Strengthening Privacy Guarantees and Enhancing Utility [4.7712438974100255]
We show how to shuffle $(epsilon_i,delta_i)$-PLDP setting with personalized privacy parameters.
We prove that shuffled $(epsilon_i,delta_i)$-PLDP process approximately preserves $mu$-Gaussian Differential Privacy with mu = sqrtfrac2sum_i=1n frac1-delta_i1+eepsilon_i-max_ifrac1-delta_i1+e
arXiv Detail & Related papers (2023-12-22T02:31:46Z) - Individual Privacy Accounting for Differentially Private Stochastic Gradient Descent [69.14164921515949]
We characterize privacy guarantees for individual examples when releasing models trained by DP-SGD.
We find that most examples enjoy stronger privacy guarantees than the worst-case bound.
This implies groups that are underserved in terms of model utility simultaneously experience weaker privacy guarantees.
arXiv Detail & Related papers (2022-06-06T13:49:37Z) - Nonparametric extensions of randomized response for private confidence sets [51.75485869914048]
This work derives methods for performing nonparametric, nonasymptotic statistical inference for population means under the constraint of local differential privacy (LDP)
We present confidence intervals (CI) and time-uniform confidence sequences (CS) for $mustar$ when only given access to the privatized data.
arXiv Detail & Related papers (2022-02-17T16:04:49Z) - Learning with User-Level Privacy [61.62978104304273]
We analyze algorithms to solve a range of learning tasks under user-level differential privacy constraints.
Rather than guaranteeing only the privacy of individual samples, user-level DP protects a user's entire contribution.
We derive an algorithm that privately answers a sequence of $K$ adaptively chosen queries with privacy cost proportional to $tau$, and apply it to solve the learning tasks we consider.
arXiv Detail & Related papers (2021-02-23T18:25:13Z) - Hiding Among the Clones: A Simple and Nearly Optimal Analysis of Privacy
Amplification by Shuffling [49.43288037509783]
We show that random shuffling amplifies differential privacy guarantees of locally randomized data.
Our result is based on a new approach that is simpler than previous work and extends to approximate differential privacy with nearly the same guarantees.
arXiv Detail & Related papers (2020-12-23T17:07:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.